Skip to main content

Alkaliphilic Bacteria: Diversity, Physiology and Industrial Applications

Abstract

Alkaliphilic bacteria are ubiquitous extremophiles representing a large number of bacterial genera and physiological types, but share common challenges that include cytoplasmic pH homeostasis and associated problems of bioenergetic work. Studies on alkaliphiles have intensified as scientists have recognized their potential in industrial and biotechnological applications, particularly, their ability to produce enzymes with novel characteristics.

Ecological niches ranging from alkaline and nonalkaline environments were sampled to study the biodiversity of alkaliphilic bacteria. Interestingly, all the econiches, including acidic soil, showed the presence of alkaliphilic bacteria belonging to the Gram-positive group, with diverse variations in cultural and morphological features. These isolates possessed enzymes such as amylase, protease, lipase and cellulase, with many isolates possessing multiple enzyme activity at alkaline pH. Two potential isolates, identified as Bacillus lehensis strain SB-D and Bacillus halodurans strain SB-W required sodium for their growth and their internal pH was two units less as compared to external pH. Further, they possessed high cytoplasmic buffering capacities absent in neutrophilic cultures. B. lehensis SB-D produced a viscous exopolymer (EP), separated as a spoolable material on addition of isopropanol, thereby resulting in the loss of viscosity of culture supernatant. The culture broth and cells of B. lehensis SB-D showed emulsification property and the EP was found to be a complex glycolipid with strong metal adsorption and adhesive property for glass and paper. These eubacteria, therefore, hold immense potential for the production of enzymes active at alkaline pH and bioactive compounds.

Keywords

  • Extremophiles
  • Alkaliphiles
  • Buffering capacities
  • Bacillus lehensis
  • Bacillus halodurans
  • Exopolymer

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-12910-5_4
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-12910-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7

References

  • Aino, K., Hirota, K., Matsuno, T., Morita, N., Nodasaka, Y., Fujiwara, T., Matsuyama, H., ­Yoshimune, K., & Yumoto, I. (2008). Bacillus polygoni sp. nov., a moderately halophilic, ­non-motile obligate alkaliphile isolated from indigo balls. International Journal of Systematic and Evolutionary Microbiology, 58, 120–124.

    Google Scholar 

  • Aizawa, T., Makoto, U., Noriyuki, I., Mutsuyasu, N., & Michio, S. (2010). Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). International Journal of Systematic and Evolutionary Microbiology, 60, 61–66.

    Google Scholar 

  • Aono, R., & Horikoshi, K. (1991). Carotenes produced by the alkalophilic yellow pigmented strains of Bacillus. Agricultural and Biological Chemistry, 55, 2643–2645.

    Google Scholar 

  • Bahm, Y. S., Park, J. M., Bai, D. H., Takase, S., & Yu, J. H. (1998). YUA001, a novel aldose ­reductase inhibitor isolated from alkaliphilic Corynebacterium sp. YUA 25. Taxonomy, ­fermentation, isolation and characterization. Journal of Antibiotics, 51, 902–907.

    Google Scholar 

  • Banciu, H. L., Sorokin, D. Y., Tourova, T. P., Galinski, E. A., Muntyan, M. S., Kuenen, J. G., & Muyzer, G. (2008). Influence of salts and pH on growth and activity of a novel facultatively ­alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing ­Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles: life under extreme conditions, 12, 391–404.

    Google Scholar 

  • Bar-or, Y., & Shilo, M. (1987). Characterisation of macromolecular flocculants produced by ­Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720. Applied and Environmental Microbiology, 53, 2226–2230.

    Google Scholar 

  • Bhushan, B. (2000). Production and characterisation of a thermostable chitinase from a new ­alkalophilic Bacillus sp BG-11. Journal of Applied Microbiology, 88, 800–808.

    Google Scholar 

  • Bhushan, B., Dosanjh, N. S., Kumar, K., & Hoondal, G. S. (1994). Lipase production from ­alkalophilic yeasts sp. by solid state fermentation. Biotechnology Letters, 16, 841–842.

    Google Scholar 

  • Blanco, K. C., de Lima, C. J. B., Monti, R., Martins Jr., J., Bernardi, N. S., & Contiero, J. (2012). Bacillus lehensis-an alkali-tolerant bacterium isolated from cassava starch wastewater: ­Optimization of parameters for cyclodextrin glycosyl transferase production. Annals of ­Microbiology, 62, 329–337.

    Google Scholar 

  • Borgave, S. B., Joshi, A. A., Kelkar, A. S., Kanekar, P. P. (2012). Screening of alkaliphilic, haloalkaliphilic bacteria and actinomycetes from alkaline soda lake of Lonar, India for antimicrobial activity. International Journal of Pharma and Bio Sciences, 3, 258–274.

    Google Scholar 

  • Borkar, S., & Bhosle, S. (2003). Alkaliphiles: microorganisms in alkaline environments. In P. C. Trivedi (Ed.), Advances in microbiology (pp. 175–209). Jodhpur: Scientific Publishers.

    Google Scholar 

  • Borkar, S., Nagarsekar, Y., & Bhosle, S. (2003). Alkaliphilic and alkalitolerant organisms from an agrochemical factory. Asian Journal of Microbiology Biotechnology and Environmental Sciences, 5, 187–191.

    Google Scholar 

  • Borsodi, A. K., Márialigeti, K., Szabo, G., Palatinszky, M., Pollak, B. Z., Kovacs, A. L., Schumann, P., & Toth, E. M. (2008). Bacillus aurantiacus sp. nov., an alkaliphilic and moderately ­halophilic bacterium isolated from Hungarian soda lakes. International Journal of Systematic and Evolutionary Microbiology, 58, 845–851.

    Google Scholar 

  • Boyer, E. W., & Ingle, M. B. (1972). Extracellular alkaline amylase from a Bacillus species. ­Journal of Bacteriology, 110, 992–1000.

    Google Scholar 

  • Cao, J., Zheng, L., & Chen, S. (1992). Screening of pectinase producer from alkalophilic ­bacteria and study on its potential application in degumming of ramie. Enzyme and Microbial ­Technology, 14, 1013–1016.

    Google Scholar 

  • Chauthaiwale, J., & Rao, M. (1994). Production and purification of extracellular D-xylose ­isomerase from an alkaliphilic, thermophilic Bacillus sp. Applied and Environmental ­Microbiology, 60, 4495–4499.

    Google Scholar 

  • Collins, M. D., Lund, B. M., Farrow, J. A. E., & Schliefer, K. H. (1983). Chemotaxonomic study of an alkaliphilic bacterium Exiguobacterium aurantiacum gen. nov. sp. nov. Journal of General Microbiology, 129, 2037–2042.

    Google Scholar 

  • Cook, M. G., Russell, J. B., Reichert, A., Wiegel, J. (1996). The intracellular pH of Clostridium paradoxium, an anaerobic alkalophilic and thermophilic bacterium. Applied and Environmental Microbiology, 62, 4576–4579.

    Google Scholar 

  • De Graaff, M., Bijmans, M. F. M., Abbas, B., Euverink, G.-J. W., Muyzer, G., & Janssen, A. J. H. (2011). Biological treatment of refinery spent caustics under halo-alkaline conditions. ­Bioresource Technology, 102, 7257–7264.

    Google Scholar 

  • Dimitrov, P. L., Kambourova, M. S., Mandeva, R. D., & Emanuilova, E. I. (1997). Isolation and characterization of xylan-degrading alkali-tolerant thermophiles. FEMS Microbiology Letters, 157, 27–30.

    Google Scholar 

  • Dunkley, E. A., Guffanti, A. A., Clejan, S., & Krulwich, T. A. (1991). Facultative ­alkaliphiles lack fatty acid desaturase activity and loose the ability to grow at near neutral pH when ­supplemented with unsaturated fatty acid. Journal of Bacteriology, 173, 1331–1334.

    Google Scholar 

  • Ferguson, S. A., Keis, S., & Cook, G. M. (2006). Biochemical and molecular characterization of a Na +-translocating F1F0-ATPase from the thermo alkaliphilic bacterium Clostridium ­paradoxum. Journal of Bacteriology, 18, 5045–5054.

    Google Scholar 

  • Florenzano, G., Sili, C., Pelosi, E., & Vincenzine, M. (1985). Cyanospira rippkae and Cyanospira capsulata (gen. nov. and sp. nov.): New filamentous heterocystous cyanobacteria from Magadi lake (Kenya). Archives of Microbiology, 140, 301–306.

    Google Scholar 

  • Fujinami, S., Terahara, N., Krulwich, T. A., & Ito, M. (2009). Motility and chemotaxis in ­alkaliphilic Bacillus species. Future Microbiology, 4, 1137–1149.

    Google Scholar 

  • Fujisawa, M., Fackelmayer, O., Liu, J., Krulwich, T. A., & Hicks, D. B. (2010). The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant. Journal of Biological Chemistry, 285, 32105–32115.

    Google Scholar 

  • Fujiwara, N., Yamamoto, K., & Masui, A. (1991). Utilization of thermostable alkaline protease from an alkalophilic thermophile for the recovery of silver from used X-ray film. Journal of Fermentation and Bioengineering, 72, 306–308.

    Google Scholar 

  • Garg, A. P., Roberts, J. C., & McCarthy, A. J. (1998). Bleach boosting effect of cellulase free ­xylanase of Streptomyces thermoviolaceus xylanase preparations on birchwood kraft pulp. ­Enzyme and Microbial Technology, 18, 261–267.

    Google Scholar 

  • Gee, J. M., Lund, B. M., Metcalf, G., & Peel, J. L. (1980). Properties of a new group of alkalophilic bacteria. Journal of General Microbiology, 117, 9–17.

    Google Scholar 

  • Georganta, G., Kaneko, T., Nakamura, N., Kudo, T., & Horikoshi, K. (1993). Isolation and partial properties of cyclomaltodextrin glucanotransferase producing alkaliphilic Bacillus sp. from a deep-sea mud sample. Starch, 45, 95–99.

    Google Scholar 

  • Gessesse, A. (1998). Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus spp. Applied and Environmental Microbiology, 9, 3533–3535.

    Google Scholar 

  • Ghauri, M. A., Khalid, A. M., Grant, S., Grant, W. D., & Heaphy, S. (2006). Phylogenetic ­analysis of bacterial isolates from man-made high-pH, high-salt environments and identification of gene-cassette-associated open reading frames. Current Microbiology, 52, 487–492.

    Google Scholar 

  • Ghosh, A., Bhardwaj, M., Satyanarayana, T., Khurana, M., Mayilraj, S., & Jain, R. K. (2007). Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 5, 238–242.

    Google Scholar 

  • Gilmour, R., Messner, P., Guffanti, A. A., Kent, R., Schebrel, A., Kerdrick, N., & Krulwich, T. (2000). Two-dimensional gel electrophoresis analyses of pH dependent protein expression in facultatively alkaliphilic Bacillus pseudofermus OF4 lead to characterisation of an S-layer ­protein with a role in alkaliphily. Journal of Bacteriology, 182, 5969–5981.

    Google Scholar 

  • Gordon, R. E., & Hyde, J. L. (1982). The Bacillus firmus-Bacillus lentus complex and pH 7.0 ­variants of some alkalophilic strains. Journal of General Microbiology, 128, 1109–1116.

    Google Scholar 

  • Grant, D. W., Mills, A. A., & Schofield, A. K. (1979). An alkalophilic sp of Ectothiorhodospira from a Kenyan soda lake. Journal of General Microbiology, 110, 137–142.

    Google Scholar 

  • Grant, W. D., Mwatha, W. E., & Jones, B. E. (1990). Alkaliphiles: Ecology diversity and applications. FEMS Microbiology Reviews, 75, 255–270.

    Google Scholar 

  • Grant, W. D. (2006). Alkaline environments and biodiversity. In Extremophiles, (Eds. Charles Gerday, and Nicolas Glansdorff), in Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK.

    Google Scholar 

  • Guffanti, A. A., Blanco, R., Benenson, R. A., & Krulwich, T. A. (1980). Bioenergetic properties of alkaline tolerant and alkalophilic strains of Bacillus firmus. Journal of General Microbiology, 119, 79–86.

    Google Scholar 

  • Gupta, S., Bhushan, B., & Hoondal, G. S. (2000). Isolation, purification and characterisation of xylanase from Staphylococcus sps SG 13 and its appplication in biobleaching of Kraft pulp. Journal of Applied Microbiology, 88, 325–334.

    Google Scholar 

  • Hamasaki, N., Shirai, S., Niitsu, M., Kakinuma, K., & Oshima, T. (1993). An alkalophilic Bacillus sp. produces 2-phenylethylamine. Applied and Environmental Microbiology, 59, 2720–2722.

    Google Scholar 

  • Hansen, S. J., & Ahring, B. K. (1997). Anaerobic microbiology of an alkaline Icelandic hot spring. FEMS Microbiology Ecology, 23, 31–38.

    Google Scholar 

  • Hicks, D. B., Liu, J., Fujisawa, M., & Krulwich, T. A. (2010). F1F0-ATP synthases of alkaliphilic bacteria: Lessons from their adaptations. Biochimica Biophysica Acta, 1797, 1362–1367.

    Google Scholar 

  • Horikoshi, K. (1971). Production of alkaline enzymes by alkaliphilic microorganisms II. Alkaline amylase produced by alkaline Bacillus no.A-40-2. Agricultural and Biological Chemistry, 35, 1783–1791.

    Google Scholar 

  • Horikoshi, K. (1991). Microorganisms in alkaline environments. Tokyo: Kodansha-VCH.

    Google Scholar 

  • Horikoshi, K. (1999). Alkaliphiles: Some applications of their products for biotechnology. ­Microbiology and Molecular Biology Reviews, 63, 735–750.

    Google Scholar 

  • Horikoshi, K., & Bull, A. T. (2011). Prologue: Definition, categories, distribution, origin and ­evolution, pioneering studies and emerging fields. In K. Horikoshi, G. Antranikan, A. T. Bull, F. T. Robb, & K. O. Stetter (Eds.), Extremophiles handbook (pp. 4–15). Berlin: Springer.

    Google Scholar 

  • Horikoshi, K., Nakao, M., Kurono, Y., & Sashihara, N. (1984). Cellulases of an alkalophilic ­Bacillus strain isolated from soil. Journal of Microbiology, 30, 774–779.

    Google Scholar 

  • Ito, S. (1997). Alkaline cellulases from alkalophilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles: life under extreme conditions, 1, 61–66.

    Google Scholar 

  • Ito, M., & Aono, R. (2002). Decrease in cytoplasmic pH-homeostatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Bioscience Biotechnology and Biochemistry, 66, 218–220.

    Google Scholar 

  • Ito, M., Terahara, N., Fujinami, S., & Krulwich, T. A. (2005). Properties of motility in Bacillus subtilis powered by the H-coupled MotAB flagellar stator, Na-coupled MotPS or hybrid ­stators MotAS or MotPB. Journal of Molecular Biology, 352, 396–408.

    Google Scholar 

  • Jangir, P. K., Singh, A., Shivaji, S., Sharma, R. (2012). Genome sequence of an alkaliphilic ­bacterium Nitritalea halalkaliphila type strain LW7, isolated from Lonar Lake. Journal of Bacteriology, 194(20), 5688–5689.

    Google Scholar 

  • Janto, B., Ahmed, A., Liu, J., Hicks, D. B., Pagni, S., Fackelmayer, O. J., Smith, T. A., & ­Krulwich, T. A. (2011). The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environmental ­Microbiology, 13(12), 3289–3309.

    Google Scholar 

  • Joshi, A., & Kanekar, P. P. (2011). Production of exopolysaccharide by Vagococcus carniphilus MCMB1018 isolated from alkaline Lonar Lake, India. Annals of Microbiology, 61, 733–740.

    Google Scholar 

  • Joshi, A. A., Kanekar, P. P., Kelkar, A. S., Sarnaik, S. S., Shouche, Y. S., & Wani, A. A. (2007). Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365 from Lonar Lake, India. Journal of Basic Microbiology, 47, 213–221.

    Google Scholar 

  • Joshi, A. A., Kanekar, P. P., Kelkar, A. S., Shouche, Y. S., Vani, A. A., Borgave, S. B., & Sarnaik, S. S. (2008). Cultivable bacterial diversity of alkaline Lonar Lake, India. Microbial Ecology, 55, 163–172.

    Google Scholar 

  • Kanekar, P. P., Sarnaik, S. S., & Kelkar, A. S. (1999). Bioremediation of phenol by alkaliphilic ­bacteria isolated from alkaline lake of Lonar, India. Journal of Applied Microbiology ­Symposium Supplement, 85, 128S–133S.

    Google Scholar 

  • Karlsson, S. Z., Banhide, G., & Alberssen, A. C. (1988). Identification and characterization of alkali-tolerant Clostridia isolated from biodeteriorated casein-containing building material. Applied Microbiology and Biotechnology, 28, 305–310.

    Google Scholar 

  • Kevbrin, V. V., Zhilina, T. N., Rainey, F. A., & Zavarzin, G. A. (1998). Tindallia magadii gen.nov., sp.nov, an alkalophilic anaerobic ammonifier from soda lake deposits. Current Microbiology, 37, 94–100.

    Google Scholar 

  • Khmelenina, V. N., Starostina, M. G., Suzina, N. E., & Trotsenko, Y. A. (1997). Isolation and characterization of halotolerant alkalophilic methanotrophic bacteria from Tuva soda lakes. Current Microbiology, 35, 257–261.

    Google Scholar 

  • Kimura, T., & Horikoshi, K. (1990). Characterisation of Pullulan-hydrolysing enzyme from an alkalo-psychrotrophic Micrococcus sp. Applied Microbiology and Biotechnology, 34, 52–56.

    Google Scholar 

  • Kitada, M., Wijayanti, L., & Horikoshi, K. (1987). Biochemical properties of a thermophillic ­alkalophile. Agricultural and Biological Chemistry, 51, 2429–2435.

    Google Scholar 

  • Kosono, S., Ohashi, Y., Kawamura, F., Kitada, M., & Kudo, T. (2000). Function of a principal Na +/H + antiporter, Sha A is required for initiation of sporulation in Bacillus subtilis. Journal of Bacteriology, 182, 898–904.

    Google Scholar 

  • Koyama, N., & Nosoh, Y. (1995). Effect of potassium and sodium ions on the cytoplasmic pH of a Bacillus. Biochimica Biophysica Acta, 812, 206–212.

    Google Scholar 

  • Krulwich, T. A. (1995). Alkaliphiles: ‘basic’ molecular problems of pH tolerance and ­bioenergetics. Molecular Microbiology, 15, 403–410.

    Google Scholar 

  • Krulwich, T. A., & Guffanti, A. A. (1989). Alkalophilic bacteria. Annual Review of Microbiology, 43, 435–463.

    Google Scholar 

  • Krulwich, T. A., & Ito, M. (2013). Alkaliphilic prokaryotes. In E. Rosenberg, E. F. Delong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes (pp. 441–469). Heidelberg: Springer.

    Google Scholar 

  • Krulwich, A. T., Agus, R., Schneier, M., & Guffanti, A. A. (1985). Buffering capacity of Bacilli that grow at different pH ranges. Journal of Bacteriology, 162, 768–772.

    Google Scholar 

  • Krulwich, T. A., Hicks, D. B., Seto-Young, D., & Guffanti, A. A. (1988). The bioenergetics of alkalophilic bacilli. Critical Reviews in Microbiology, 16, 15–36.

    Google Scholar 

  • Krulwich, T. A., Masahiro, I., Gilmour, G., Hicks, D. B., & Guffanti, A. A. (1998). Energetics of alkaliphilic Bacillus sp. Physiology and molecules. Advances in Microbial Physiology, 40, 401–436.

    Google Scholar 

  • Krulwich, T. A., Hicks, D. B., & Ito, M. (2009). Cation/proton antiporter complements of bacteria: Why so large and diverse? Molecular Microbiology, 74, 257–260.

    Google Scholar 

  • Krulwich, T. A., Liu, J., Morino, M., Fujisawa, M., Ito, M., & Hicks, D. (2011a). Adaptive ­mechanisms of extreme alkaliphiles. In K. Horikoshi, G. Antranikan, A. Bull, F. T. Robb, & K. Stetter (Eds.), Extremophiles handbook (pp. 120–139). Heidelberg: Springer.

    Google Scholar 

  • Krulwich, T. A., Sachs, G., & Padan, E. (2011b). Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 9, 330–343.

    Google Scholar 

  • Kumar, C. G., Joo, H. S., Choi, J. W., Koo, Y. M., & Chang, C. S. (2004). Purification and ­characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and Microbial Technology, 34, 673–681.

    Google Scholar 

  • Lee, J. C., Lee, G. S., Park, D. J., & Kim, C. J. (2008). Bacillus alkalitelluris sp. nov., an ­alkaliphilic bacterium isolated from sandy soil. International Journal of Systematic and Evolutionary ­Microbiology, 58, 2629–2634.

    Google Scholar 

  • Lefevre, C. T., Frankel, R. B., Posfai, M., Prozorov, T., & Bazylinski, D. A. (2011). Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. ­Environmental Microbiology, 13, 2342–2350.

    Google Scholar 

  • Lesuisse, E., Schanck, K., & Colson, C. (1993). Purification and preliminary characterisation of an extracellular lipase of Bacillus subtilis 168, an extremely alkaline pH-tolerant enzyme. ­European Journal of Biochemistry, 216(1), 155–160.

    Google Scholar 

  • Li, Y. H., Engle, M. N., Weiss, L., Mandelco, L., & Wiegel, J. (1994). Clostridium ­thermoalcaliphilum sp. nov, an anaerobic and thermotolerant facultative alkaliphile. ­International Journal of ­Systematic and Evolutionary Microbiology, 44, 111–118.

    Google Scholar 

  • Lowe, S. E., et al. (1993). Anaerobic bacteria adapted to environmental stress. Microbiological Reviews, 57, 483–492.

    Google Scholar 

  • Mc Lean, R. J. C., Beauchemin, D., Clapham, L., & Beveridge, T. J. (1990). Metal binding characteristics of the Gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Applied and Environmental Microbiology, 56, 3671–3677.

    Google Scholar 

  • McMillan, D. G., Keis, S., Dimroth, P., & Cook, G. M. (2007). A specific adaptation in the a subunit of thermoalkaliphilic F1F0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. Journal of Biological Chemistry, 282, 17395–17404.

    Google Scholar 

  • McMillan, D. G., Vetasquez, I., Nunn, B. L., Goodlett, D. R., Hunter, K. A., Lamont, I., Sander, S. G., & Cook, G. M. (2010). Acquisition of iron by alkaliphilic bacillus species. Applied and Environmental Microbiology, 76, 6955–6961.

    Google Scholar 

  • Mesbah, N. M., & Wiegel, J. (2011). The Na + -translocating F1F0-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. Biochimica et Biophysica Acta 1807(9) 1133–1142.

    Google Scholar 

  • Mesbah, N. M., Abou-El-Ela, S. H., & Wiegel, J. (2007). Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun Egypt. Microbial Ecology, 54, 598–617.

    Google Scholar 

  • Mesbah, N., Cook, G., & Wiegel, J. (2009). The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na(K)/H+ antiporters. Molecular Microbiology, 74, 270–281.

    Google Scholar 

  • Nakamura, S. K., Wakabayashi, R., Nakai, R., & Horikoshi, K. (1993). Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41 M-1. Applied and Environmental Microbiology, 59, 2311–2316.

    Google Scholar 

  • Nihalani, D., & Satyanarayan, T. (1992). Isolation and characterisation of extracellular alkaline enzyme producing bacteria. Indian Journal of Microbiology, 32, 443–449.

    Google Scholar 

  • Nimura, Y., Yanangida, F., Uchimura, T., Ohara, N., Suzuki, K., & Kozaki, M. (1987). A new facultative anaerobic xylan using alkalophile lacking cytochrome, quinone and catalase. ­Agricultural and Biological Chemistry, 51, 2271–2275.

    Google Scholar 

  • Nogi, Y., Takami, H., & Horikoshi, K. (2005). Characterization of alkaliphilic Bacillus strains used in industry: Proposal of five novel species. International Journal of Systematic and ­Evolutionary Microbiology, 55, 2309–2315.

    Google Scholar 

  • Nomoto, M., Oshawa, M., Wang, H. L., Chen, C. C., & Yeh, K. W. (1988). Purification and ­characterization of extracellular alkaline phosphatase from an alkaliphilic bacterium. ­Agricultural and Biological Chemistry, 52, 1643–1647.

    Google Scholar 

  • Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica Biophysica Acta, 1717, 67–88.

    Google Scholar 

  • Pogoryelov, D., Sudhir, P. R., Kovacs, L., Gombos, Z., Brown, I., & Garab, G. (2003). ­Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium ­Arthrospira platensis. Journal of Bioenergetics and Biomembranes, 35, 427–437.

    Google Scholar 

  • Rajaram, S., & Varma, A. (1990). Production and characterisation of xylanase from Bacillus ­thermoalkalophilus grown on agricultural wastes. Applied Microbiology and Biotechnology, 34, 141–144.

    Google Scholar 

  • Ray, R. R., & Nanda, G. (1996). Microbial ⍰-amylases: Biosynthesis, characteristics and ­industrial applications. Critical Reviews in Microbiology, 22, 181–199.

    Google Scholar 

  • Rees, H. C., Grant, W. D., Jones, B. E., & Heaphy, S. (2004). Diversity of Kenyan soda lake ­alkaliphiles assessed by molecular methods. Extremophiles: life under extreme conditions, 8, 63–71.

    Google Scholar 

  • Roadcap, G. S., Sanford, R. A., Jin, Q., Pardinas, J. R., & Bethke, C. M. (2006). Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water, 44, 511–517.

    Google Scholar 

  • Ruis, N., & Loren, J. G. (1998). Buffering capacity and membrane H+ conductance of ­neutrophilic and alkalophilic gram-positive bacteria. Applied and Environmental Microbiology, 64, ­1344–1349.

    Google Scholar 

  • Saeki, K., Ozaki, K., Kobayashi, T., & Ito, S. (2007). Detergent alkaliphile proteases: Enzymatic properties, genes, and crystal structures. Journal of Biosciences and Bioengineering, 103, 501–508.

    Google Scholar 

  • Salva, T. D. G., Delima, V. B., & Pagana, A. P. (1997). Screening of alkaliphilic bacteria for ­Cyclodextrin glycosyl transferase production. Revista de Microbiologica, 28, 157–164.

    Google Scholar 

  • Sarethy, I. P., Saxena, Y., Kapoor, A., Sharma, M., Sharma, S. K., Gupta, V., & Gupta, S. (2011). Alkaliphilic bacteria: Applications in industrial biotechnology. Journal of Industrial ­Microbiology and Biotechnology, 38, 769–790.

    Google Scholar 

  • Shikata, S., Saeki, K., Okoshi, H., Yoshimatsu, T., Ozaki, K., Kawai, S., & Ito, S. (1990). ­Alkaline cellulase for laundry detergents: Production by alkalophilic strains of Bacillus and some ­properties of the crude enzymes. Agricultural Biological Chemistry, 54, 91–96.

    Google Scholar 

  • Shirai, T., Igarashi, K., Ozawa, T., Hagihara, H., Kobayashi, T., Ozaki, K., & Ito, S. (2007). ­Ancestral sequence evolutionary trace and crystal structure analyses of alkaline a-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins, 66, 600–610.

    Google Scholar 

  • Singh, S. (1995). Partial purification and some properties of urease from the alkaliphilic ­cyanobacterium Nostoc calcicola. Folia Microbiologica Prague, 40, 529–533.

    Google Scholar 

  • Sneath, P. H., Nicholas, A., Mair, S., Elisabeth, M., Sharpe, J., & Holt, G. (1986). Bergeys manual of systematic bacteriology. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Sorokin, D. Y., & Kuenen, J. G. (2005). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiological Reviews, 29, 685–702.

    Google Scholar 

  • Sorokin, D. Y., Muyzer, G., Brinkhoff, T., Kuenen, J. G., & Jetten, M. S. M. (1998). Isolation and characterisation of a novel facultatively alkalophilic Nitrobacter sps, N.alkalicus sp. nov. Archive Microbiology, 170, 345–352.

    Google Scholar 

  • Sorokin, I. D., Kravchenko, I. K., Tourova, T. P., Kolganova, T. V., Boulygina, E. S., & Sorokin, D. Y. (2008). Bacillus alkalidiazotrophicu sp. nov., a diazotrophic, low salt-tolerant ­alkaliphile isolated from Mongolian soda soil. International Journal of Systematic of Evolutionary ­Microbiology, 58, 2459–2464.

    Google Scholar 

  • Sorokin, D. Y., Kuenen, J. G., & Muyzer, G. (2011). The microbial sulfur cycle at extremely ­haloalkaline conditions of soda lakes. Frontiers in Microbiology, 2, 44.

    Google Scholar 

  • Takami, H., Inoue, A., Fuji, F., & Horikoshi, K. (1997). Microbiol flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 152, 279–285.

    Google Scholar 

  • Takimura, Y., Saito, K., Okuda, M., Kageyama, Y., Katsuhisa, S., Ozaki, K., Ito, S., & Kobayashi, T. (2007). Alkaliphilic Bacillus sp. strain KSM-LD1 contains a record number of subtilisin-like proteases genes. Applied Microbiology and Biotechnology, 76, 395–405.

    Google Scholar 

  • Thongaram, T., Kosono, S., Ohkuma, M., Hongoh, Y., Kitada, M., Yoshinaka, T., Trakulnaleamsai, S., Noparatnaraporn, N., & Kudo, T. (2003). Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes and Environment, 18, 152–159.

    Google Scholar 

  • Thongaram, T., Hongoh, Y., Kosono, S., Ohkuma, M., Trakulnaleamsai, S., Noparatnaraporn, N., & Kudo, T. (2005). Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles, 9, 229–238.

    Google Scholar 

  • Tindall, B. J., Allan, A., Mills, A., & Grant, W. D. (1980). An alkalophilic red halophilic Bacterium with low magnesium requirement from a Kenyan soda lake. Journal of General Microbiology, 116, 257–260.

    Google Scholar 

  • Tsujibo, H., Sato, T., Inui, M., Yamamoto, H., & Inamori, Y. (1988). Intra-cellular ­accumulation of phenazine antibobiotics production by an alkalophilic actinomycete. Agricultural and ­Biological Chemistry, 52, 301–306.

    Google Scholar 

  • Upsani, V., & Desai, S. (1990). Sambhar Salt Lake-chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Archives of Microbiology, 154, 589–593.

    Google Scholar 

  • Vargas, V. A., Delgado, O. D., Hatti-Kaul, R., & Mattiasson, B. (2005). Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. ­International Journal of Systematic and Evolutionary Microbiology, 55, 899–902.

    Google Scholar 

  • Wang, Y. X., Srivastava, K. C., Shen, G. J., & Wang, H. Y. (1995). Thermostable alkaline ­lipase from a newly isolated thermophilic Bacillus, strain A-30-1 (ATCC 53841). Journal of ­Fermentation and Bioengineering, 79, 433–438.

    Google Scholar 

  • Xu, Y., Zhou, P. J., & Tian, X. Y. (1999). Characterisation of two novel haloalkalophilic archaea Natronorubrum bangense gen. Nov., sp. Nov., and Natronorubrum tibetense gen. nov., sp. nov. International Journal of Systematic Bacteriology, 49, 261–266.

    Google Scholar 

  • Yoshihara, K., & Kobayashi, Y. (1982). Retting of Mitsumata bast by alakophilic Bacillus in ­papermaking. Agricultural and Biological Chemistry, 46, 109–117.

    Google Scholar 

  • Yumoto, I. (2007). Environmental and taxonomic biodiversities of gram-positive alkaliphiles. In C. Gerday & N. Glansdorff (Eds.), Physiology and biochemistry of extremophiles (pp. ­295–310). Washington: ASM Press.

    Google Scholar 

  • Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Inoue, N., & Kawasaki, K. (2000). ­Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid ­composition and cell-surface aspects depending on culture pH. Extremophiles, 4, 285–290.

    Google Scholar 

  • Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., & Suemori, A. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and hydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 53, 1531–1536.

    Google Scholar 

  • Yumoto, I., Hirota, K., Nodasaka, Y., Yokota, Y., Hoshino, T., & Nakajima, N. (2004). ­Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that ­reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 54, ­2379–2383.

    Google Scholar 

  • Zhang, H.-M., Li, Z., Tsudome, M., Ito, S., Takami, H., & Horikoshi, K. (2005). An alkali-inducible flotillin-like protein from Bacillus halodurans C125. The Protein Journal, 24, 125–131.

    Google Scholar 

  • Zhao, B., Mesbah, N. M., Dalin, E., Goodwin, L. A., Nolan, M., Pitluck, S., Cherkov, O., Brettin, T. S., Han, J., Larimer, F. W., Land, M. L., Hauser, L. J., Kyrpides, N., & Wiegel, J. (2011). Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. Journal of Bacteriology, 193, 4023–4024.

    Google Scholar 

  • Zhilina, T. N., Zavarzin, G. A., Rainey, F., Kevbrin, V. V., Kostrikina, N. A., & Lysenko, A. M. (1996). Spirochaeta alkalica sp.nov. Spirochaeta africana sp. Nov., and Spirochaeta asiatica sp.nov. alkalophilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. International Journal of Systematic Bacteriology, 46, 305–312.

    Google Scholar 

  • Zhilina, T. N., Appel, R., Probian, C., Brossa, E. L., Harder, J., Widdel, F., & Zavarzin, G. A. (2004). Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Archives of Microbiology, 182, 244–253.

    Google Scholar 

  • Zhilina, T. N., Kevrin, W., Turova, T. P., Lysenko, A. M., Kostrikina, N. A., & Zavarzin, G. A. (2005). Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Mikrobiologia, 74, 642–653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Borkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borkar, S. (2015). Alkaliphilic Bacteria: Diversity, Physiology and Industrial Applications. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_4

Download citation