Eubacterial Siderophores and Factors Modulating Their Production



Siderophores are low-molecular-weight ligands produced by bacteria, fungi and plants to solubilize and take up iron. Iron is essential for the growth and development of almost all living organisms and acts as a catalyst in some of the most fundamental enzymatic processes, including oxygen metabolism, electron transfer and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) synthesis. However, despite its abundance on earth, iron is biologically unavailable in most environments as it aggregates into insoluble oxy-hydroxide polymers. Hence, to acquire this iron from natural ecosystems, bacteria have evolved multiple parallel pathways, the most important being siderophore production.

This study was aimed at studying the incidence of siderophore-producing bacteria in the two coastal ecosystems of Goa: sand dunes and mangroves. The two isolates TMR2.13 and NAR38.1 selected for the study were identified as Pseudomonas aeruginosa and Bacillus amyloliquefaciens, respectively. Sodium benzoate was found to have a remarkable effect on siderophore production in P. aeruginosa TMR2.13 and increased iron demand of the organism as compared to the metabolism of simple substrates such as glucose. Studies were further carried out with B. amyloliquefaciens NAR38.1 to understand the effect of the presence of both biotic and abiotic metals in the growth medium. The presence of metals showed a varied effect on growth and siderophore production with increase in production of siderophores in the presence of zinc, cobalt, manganese, lead and aluminium which can be exploited in phytoremediation.


Marine siderophores Sodium benzoate Metal ions Pseudomonas aeruginosa Bacillus amyloliquefaciens 


  1. Ahmed, E., & Holmstrom, S. J. M. (2014). Siderophores in environmental research: Roles and applications. Microbial Biotechnology, 7, 196–208.CrossRefGoogle Scholar
  2. Albesa, I., Barberes, L. I., Pajaro, M. C., & Craso, A. J. (1985). Pyoverdine production by Pseudomonas fluorescens in synthetic media with various sources of nitrogen. Journal of General Microbiology, 131, 3251–3254.Google Scholar
  3. Barbeau, K. (2006). Photochemistry of organic iron (III) complexing ligands in oceanic systems. Photochemistry and Photobiology, 82, 1505–1506.CrossRefGoogle Scholar
  4. Barbeau, K., Rue, E. L., Bruland, K. W., & Butler, A. (2001). Photochemical cycling of iron in the surface ocean mediated by microbial iron (iii)-binding ligands. Nature, 413, 409–413.CrossRefGoogle Scholar
  5. Barbeau, K., Zhang, G., Live, D. H., & Butler, A. (2002). Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. Journal of the American Chemical Society, 124, 378–379.CrossRefGoogle Scholar
  6. Barbeau, K., Rue, E. L., Trick, C. G., Bruland, K. T., & Butler, A. (2003). Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography, 48, 1069–1078.CrossRefGoogle Scholar
  7. Bar-Ness, E., Chen, Y., Hadar, Y., Marchner, H., & Romheld, V. (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant and Soil, 130, 231–241.CrossRefGoogle Scholar
  8. Boorman, L. (1977). Sanddunes. In K. S. R. Barnes (Ed.), The coastline (pp. 161–197). New York: Wiley.Google Scholar
  9. Boruah, H. P. D., & Kumar, B. S. D. (2002). Biological activity of secondary metabolites produced by strain of Pseudomonas fluorescens. Folia Microbiologica, 47, 359–363.CrossRefGoogle Scholar
  10. Braud, A., Jezequel, K., Leger, M. A., & Lebeau, T. (2006). Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/ or toxic metals (Cr, Hg, Pb). Biotechnology and Bioengineering, 94, 1080–1088.CrossRefGoogle Scholar
  11. Braud, A., Hoegy, F., Jezequel, K., Lebeau, T., & Schalk, I. J. (2009a). New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environmental Microbiology, 11, 1079–1091.CrossRefGoogle Scholar
  12. Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009b). Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere, 74, 280–286.CrossRefGoogle Scholar
  13. Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L. A., & Schalk, I. J. (2010). The siderophores pyoverdine and pyochelin are involved inPseudomonas aeruginosa resistence against metals: Another biological function of these two siderophores. Environmental Microbiology Reports, 2, 419–425.CrossRefGoogle Scholar
  14. Budzikiewicz, H. (1993). Secondary metabolites from fluorescent pseudomonads. FEMS Microbiology Reviews, 104, 209–228.CrossRefGoogle Scholar
  15. Bultreys, A., & Gheysen, D. (2000). Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG2352. Applied Environmental Microbiology, 66, 325–331.CrossRefGoogle Scholar
  16. Carter, R. W. G. (1998). “Coastal dunes”. Coastal environments: An introduction to the physical, ecological and cultural ecosystems of coastlines. New York: Academic press.Google Scholar
  17. Casida, L. E. Jr (1992). Competitive ability and survival in soil of Pseudomonas strain 679-2a dominant, nonobligate bacterial predator of bacteria. Applied Environmental Microbiology, 58, 32–37.Google Scholar
  18. Chu, B. C., Garcia-Herrero, A., Johanson, T. H., Krewulak, K. D., Lau, C. K., Peacock, R. S., et al. (2010). Siderophore uptake in bacteria and the battle for iron with the host; a bird's eyeview. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 23, 601–611.CrossRefGoogle Scholar
  19. Desai, K. N., & Untawale, A. G. (2002). Sand dune vegetation of Goa; conservation and management. Botanical Society of Goa, Goa India.Google Scholar
  20. Dimkpa, C. O., Svatoš, A., Dabrowska, P., Schmidt, A., Boland, W., & Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomycesspp. Chemosphere, 74, 19–25.CrossRefGoogle Scholar
  21. Dinkla, I. J. T., Gabor, E. M., & Janssen, D. B. (2001). Effects of iron limitation on the degradation of Toluene by Pseudomonas Strains carrying the TOL(pWWO) plasmid. Applied Environmental Microbiology, 67, 3406–3412.CrossRefGoogle Scholar
  22. Duffy, B. K., & Defago, G. (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied Environmental Microbiology, 65, 2429–2438.Google Scholar
  23. Duhme, R. C., Hider, M. J., Naldrett, M. J., & Pau, R. N. (1998). The stability of the molybdenum-azotochelin complex and its effect on siderophore production in Azotobacter vinelandii. Journal of Biological Inorganic Chemistry, 3, 520–526.CrossRefGoogle Scholar
  24. Gaonkar, T., & Bhosle, S. (2013). Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere, 93, 1835–1843.Google Scholar
  25. Gaonkar, T., Nayak, P., Garg, S., & Bhosle, S. (2012). Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. The Scientific World Journal, 2012, 1–8.CrossRefGoogle Scholar
  26. Godinho, A., & Bhosle, S. (2002). Diazotrophic bacteria associated with coastal sand dune vegetation. National conference of coastal agriculture research. 6–7 April. ICAR Research Complex for Goa.Google Scholar
  27. Guan, L. L., Kanoh, K., & Kamino, K. (2001). Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Applied Environmental Microbiology, 67, 1710–1717.CrossRefGoogle Scholar
  28. Harrington, J. M., & Crumbliss, A. L. (2009). The redox hypothesis in siderophore-mediated iron uptake. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 22, 679–689.CrossRefGoogle Scholar
  29. Hickford, S. J. H., Kuepper, F. C., Zhang, G., Carrano, C. J., Blunt, J. W., & Butler, A. (2004). Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. Journal of Natural Products, 67, 1897–1899.CrossRefGoogle Scholar
  30. Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27, 637–657.CrossRefGoogle Scholar
  31. Homann, V. V., Sandy, M., Tincu, J. A., Templeton, A. S., Tebo, B. M., & Butler, A. (2009). Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. Journal of Natural Products, 72, 884–888.CrossRefGoogle Scholar
  32. Hossain, H. Z., Aziz, C. B., & Saha, M. L. (2012). Relationships between soil physic chemical properties and total viable bacterial counts in Sunderban mangrove forests, Bangladesh. Dhaka Univ. Journal of Biological Sciences, 21, 169–175.Google Scholar
  33. Hu, X., & Boyer, G. L. (1996). Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Applied and Environmental Microbiology, 62, 4044–4048.Google Scholar
  34. Hussain, K. A., & Joo, J. H. (2014). Potential of siderophore production by bacteria isolated from heavy metal: Polluted and rhizhosphere soils. Current Microbiology, 6, 717–723.CrossRefGoogle Scholar
  35. Ito, Y., & Butler, A. (2005). Structure of synechobactins, new siderophores of the marine Cyanobacterium Synechococcus sp. PCC 7002. Limnology and Oceanography, 50, 1918–1923.CrossRefGoogle Scholar
  36. Kim, E. J., Sabra, W., & Zeng, A. P. (2003). Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology (Reading, England), 149, 2627–2634.CrossRefGoogle Scholar
  37. King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demostration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301–307.Google Scholar
  38. Kupper, F. C., Carrano, C. J., Kuhn, J. U., & Butler, A. (2006). Photoreactivity of iron(III)-aerobactin: Photoproduct structure and iron(III) coordination. Inorganic Chemistry, 45, 6028–6033.CrossRefGoogle Scholar
  39. Laine, M. H., Karwoski, M. T., Raaska, L., & Mattila-Sandholm, T. (1996). Antimicrobial activity of Pseudomonas spp. against food poisoning bacteria and moulds. Letters in Applied Microbiology, 22, 214–218.CrossRefGoogle Scholar
  40. Li, X. Z., Nikaido, H., & Williams, K. E. (1997). Silver resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. Journal of Bacteriology, 179, 6127–6132.Google Scholar
  41. Light, P. A., & Clegg, R. A. (1974). Metabolism in iron limited growth. In J. B. Neilands (Ed.), Microbial iron metabolism (1st ed., pp. 35–61). New York: Academic Press.Google Scholar
  42. Lutkenhaus, J. F. (1977). Role of a major outer membrane protein in Escherichia coli. Journal of Bacteriology, 131, 631–637.Google Scholar
  43. Manninen, E., & Mattila-Sandholm, T. (1994). Methods for the detection of Pseudomonas siderophores. Journal of Microbiological Methods, 19, 223–234.CrossRefGoogle Scholar
  44. Martin, J. D., Ito, Y., Homann, V. V., Haygood, M. G., & Butler, A. (2006). Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. Journal of Biological Inorganic Chemistry, 11, 633–641.CrossRefGoogle Scholar
  45. Martinez, J. S., Carter-Franklin, J. N., Mann, E. L., Martin, J. D., Haygood, M. G., & Butler, A. (2003). Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proceedings of the National Academy of Sciences of United States of America, 100, 3754–3759.Google Scholar
  46. Messenger, A. J. M., & Ratledge, C. (1985). Siderophores. –In M. Moo-Youg (Ed.), Comprehensive biotechnology (Vol. 3, pp. 275–294). Pergamon Press, New York.Google Scholar
  47. Meyer, J. M., & Abdallah, M. A. (1978). The fluorescent pigment of Pseudomonas fluorescens. Biosynthesis, purification and physicochemical properties. Journal of General Microbiology, 107, 319–328.CrossRefGoogle Scholar
  48. Morris, J., O’Sullivan, D. J., Koster, M., Leong, J., Weisbeek, P. J., & O’Gara, F. (1992). Characterization of fluorescent siderophore-mediated iron uptake in Pseudomonas sp.strain M114: Evidence for the existence of an additional ferric siderophore receptor. Applied and Environmental Microbiology, 58, 630–635.Google Scholar
  49. Neilands, J. B. (1984). Siderophores of bacteria and fungi. Microbiological Sciences, 1, 9–14.Google Scholar
  50. Nowak-Thompson, B., & Gould, S. J. (1994). A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin. BioMetals, 7, 20–24.CrossRefGoogle Scholar
  51. Nozaki, M., & Ishimura, Y. (1974). Oxygenases. In J. B. Neilands (Ed.), Microbial iron metabolism (1st ed., pp. 417–441). New York: Academic Press.Google Scholar
  52. Ochsner, U. A., Wilderman, P. J., Vasil, A. I., & Vasil, M. L. (2002). Gene ChipR expression analysis of the iron starvation response in Pseudomonas aeruginosa: Identification of novel pyoverdine biosynthesis genes. Molecular Microbiology, 45, 1277–1287.CrossRefGoogle Scholar
  53. Palleroni, N. J. (1984). Family I Pseudomonadaceae. In N.R. Krieg, J.G. Holt (Eds.), Bergey’s manual of systematic bacteriology (Vol. 1, pp. 141–199). Baltimore: The Williams and Wilkins.Google Scholar
  54. Pugsley, A. P., & Schnaitman, C. A. (1978). Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. Journal of Bacteriology, 133, 1181–1189.Google Scholar
  55. Ramanathan, A. L., G, Singh., Majumdar, J., Samal, A. C., Chauhan, R., Ranjan, R. K., Rajkumar, K., & Santra, S. C. (2008). A study of microbial diversity and its interaction with nutrients in the sediments of Sunderban mangroves. Indian Journal of Marine Sciences, 37, 159–165.Google Scholar
  56. Rawte, T., Padte, M., & Mavinkurve, S. (2002). Incidence of marine and mangrove bacteria accumulating polyhydroxyalkanoates on the mid-west coast of India. World Journal of Microbiology and Biotechnology, 18, 655–659.CrossRefGoogle Scholar
  57. Raymond, K. N., & Dertz, E. (2004). Biochemical and physical properties of siderophores. In J. H. Crosa, A. R. Mey & S. M. Payne (Eds.), Iron transport in bacteria (1st edn., pp. 3–17). Washington, DC: ASM press.Google Scholar
  58. Reid, C. P., Szaniszlo, P. J., & Crowley, D. E. (1986). Siderophore involvement in plant iron nutrition. In T. R. Swinburne (Ed.), Iron siderophores and plant diseases (pp. 29–42). New York: Plenum Press.Google Scholar
  59. Sandy, M., & Butler, A. (2009). Microbial iron acquisition: Marine and terrestrial siderophores. Chemical Reviews, 109, 4580–4595.CrossRefGoogle Scholar
  60. Sharma, A., & Johri, B. N. (2003). Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research, 15, 243–248.CrossRefGoogle Scholar
  61. Song, J., Sung, J., Kim, Y. M., Zylstra, G. J., & Kim, E. (2000). Roles of the meta- and the ortho-Cleavage pathways for the efficient utilization of aromatic hydrocarbons by Sphingomonas yanoikuyae B1. The Journal of Microbiology, 38, 245–249.Google Scholar
  62. Staijen, I. E., & Witholt, B. (1998). Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk + bacterial strains. Biotechnology Bioengineering, 57, 228–237.CrossRefGoogle Scholar
  63. Tank, N., & Saraf, M. (2009). Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Journal of Basic Microbiology, 49, 195–204.CrossRefGoogle Scholar
  64. Teitzel, G. M., Geddie, A., De Long, S. K., Kirisits, M. J., Whiteley, M., & Parsek, M. R. (2006). Survival and growth in the presence of elevated copper: Transcriptional profiling of copper-stressed Pseudomonas aeruginosa. Journal of Bacteriology, 188, 7242–7256.CrossRefGoogle Scholar
  65. Vasil, M. L., & Ochsner, U. A. (1999). The response of Pseudomonas aeruginosa to iron: Genetics, biochemistry and virulence. Molecular Microbiology, 34, 399–413.CrossRefGoogle Scholar
  66. Villegas, M., Villa, P., & Frías, A. (2002). Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Revista Latinoamericana de Microbiologia, 44, 112–117.Google Scholar
  67. Visca, P., Ciervo, A., Sanfilippo, V., & Orsi, N. (1993). Iron-regulated salicylate synthesis by Pseudomonas spp. Journal of General Microbiology, 139, 1995–2001.CrossRefGoogle Scholar
  68. Vraspir, J. M., & Butler, A. (2008). Chemistry of marine ligands and siderophores. Annual Review of Marine Science, 1, 43–63.CrossRefGoogle Scholar
  69. Wandersman, C., & Delepelaire, P. (2004). Bacterial iron sources: From siderophores to hemophores. Annual Review of Microbiology, 58, 611–647.CrossRefGoogle Scholar
  70. Wang, Y., Brown, H. N., Crowley, D., & Szaniszlo, P. J. (1993). Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environment, 16, 579–585.CrossRefGoogle Scholar
  71. Xiao, R., & Kisaalita, W. S. (1998). Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion. Applied and Environmental Microbiology, 64, 1472–1476.Google Scholar
  72. Zeyaullah, M., Abdelkafe, A. S., Zabya, W. B., & Ali, A. (2009). Biodegradation of catechols by micro-organisms-a short review. African Journal of Biotechnology, 8, 2916–2922.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations