Skip to main content

Eubacterial Siderophores and Factors Modulating Their Production

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria

Abstract

Siderophores are low-molecular-weight ligands produced by bacteria, fungi and plants to solubilize and take up iron. Iron is essential for the growth and development of almost all living organisms and acts as a catalyst in some of the most fundamental enzymatic processes, including oxygen metabolism, electron transfer and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) synthesis. However, despite its abundance on earth, iron is biologically unavailable in most environments as it aggregates into insoluble oxy-hydroxide polymers. Hence, to acquire this iron from natural ecosystems, bacteria have evolved multiple parallel pathways, the most important being siderophore production.

This study was aimed at studying the incidence of siderophore-producing bacteria in the two coastal ecosystems of Goa: sand dunes and mangroves. The two isolates TMR2.13 and NAR38.1 selected for the study were identified as Pseudomonas aeruginosa and Bacillus amyloliquefaciens, respectively. Sodium benzoate was found to have a remarkable effect on siderophore production in P. aeruginosa TMR2.13 and increased iron demand of the organism as compared to the metabolism of simple substrates such as glucose. Studies were further carried out with B. amyloliquefaciens NAR38.1 to understand the effect of the presence of both biotic and abiotic metals in the growth medium. The presence of metals showed a varied effect on growth and siderophore production with increase in production of siderophores in the presence of zinc, cobalt, manganese, lead and aluminium which can be exploited in phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, E., & Holmstrom, S. J. M. (2014). Siderophores in environmental research: Roles and applications. Microbial Biotechnology, 7, 196–208.

    Article  Google Scholar 

  • Albesa, I., Barberes, L. I., Pajaro, M. C., & Craso, A. J. (1985). Pyoverdine production by Pseudomonas fluorescens in synthetic media with various sources of nitrogen. Journal of General Microbiology, 131, 3251–3254.

    Google Scholar 

  • Barbeau, K. (2006). Photochemistry of organic iron (III) complexing ligands in oceanic systems. Photochemistry and Photobiology, 82, 1505–1506.

    Article  Google Scholar 

  • Barbeau, K., Rue, E. L., Bruland, K. W., & Butler, A. (2001). Photochemical cycling of iron in the surface ocean mediated by microbial iron (iii)-binding ligands. Nature, 413, 409–413.

    Article  Google Scholar 

  • Barbeau, K., Zhang, G., Live, D. H., & Butler, A. (2002). Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. Journal of the American Chemical Society, 124, 378–379.

    Article  Google Scholar 

  • Barbeau, K., Rue, E. L., Trick, C. G., Bruland, K. T., & Butler, A. (2003). Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography, 48, 1069–1078.

    Article  Google Scholar 

  • Bar-Ness, E., Chen, Y., Hadar, Y., Marchner, H., & Romheld, V. (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant and Soil, 130, 231–241.

    Article  Google Scholar 

  • Boorman, L. (1977). Sanddunes. In K. S. R. Barnes (Ed.), The coastline (pp. 161–197). New York: Wiley.

    Google Scholar 

  • Boruah, H. P. D., & Kumar, B. S. D. (2002). Biological activity of secondary metabolites produced by strain of Pseudomonas fluorescens. Folia Microbiologica, 47, 359–363.

    Article  Google Scholar 

  • Braud, A., Jezequel, K., Leger, M. A., & Lebeau, T. (2006). Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/ or toxic metals (Cr, Hg, Pb). Biotechnology and Bioengineering, 94, 1080–1088.

    Article  Google Scholar 

  • Braud, A., Hoegy, F., Jezequel, K., Lebeau, T., & Schalk, I. J. (2009a). New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environmental Microbiology, 11, 1079–1091.

    Article  Google Scholar 

  • Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009b). Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere, 74, 280–286.

    Article  Google Scholar 

  • Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L. A., & Schalk, I. J. (2010). The siderophores pyoverdine and pyochelin are involved inPseudomonas aeruginosa resistence against metals: Another biological function of these two siderophores. Environmental Microbiology Reports, 2, 419–425.

    Article  Google Scholar 

  • Budzikiewicz, H. (1993). Secondary metabolites from fluorescent pseudomonads. FEMS Microbiology Reviews, 104, 209–228.

    Article  Google Scholar 

  • Bultreys, A., & Gheysen, D. (2000). Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG2352. Applied Environmental Microbiology, 66, 325–331.

    Article  Google Scholar 

  • Carter, R. W. G. (1998). “Coastal dunes”. Coastal environments: An introduction to the physical, ecological and cultural ecosystems of coastlines. New York: Academic press.

    Google Scholar 

  • Casida, L. E. Jr (1992). Competitive ability and survival in soil of Pseudomonas strain 679-2a dominant, nonobligate bacterial predator of bacteria. Applied Environmental Microbiology, 58, 32–37.

    Google Scholar 

  • Chu, B. C., Garcia-Herrero, A., Johanson, T. H., Krewulak, K. D., Lau, C. K., Peacock, R. S., et al. (2010). Siderophore uptake in bacteria and the battle for iron with the host; a bird's eyeview. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 23, 601–611.

    Article  Google Scholar 

  • Desai, K. N., & Untawale, A. G. (2002). Sand dune vegetation of Goa; conservation and management. Botanical Society of Goa, Goa India.

    Google Scholar 

  • Dimkpa, C. O., Svatoš, A., Dabrowska, P., Schmidt, A., Boland, W., & Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomycesspp. Chemosphere, 74, 19–25.

    Article  Google Scholar 

  • Dinkla, I. J. T., Gabor, E. M., & Janssen, D. B. (2001). Effects of iron limitation on the degradation of Toluene by Pseudomonas Strains carrying the TOL(pWWO) plasmid. Applied Environmental Microbiology, 67, 3406–3412.

    Article  Google Scholar 

  • Duffy, B. K., & Defago, G. (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied Environmental Microbiology, 65, 2429–2438.

    Google Scholar 

  • Duhme, R. C., Hider, M. J., Naldrett, M. J., & Pau, R. N. (1998). The stability of the molybdenum-azotochelin complex and its effect on siderophore production in Azotobacter vinelandii. Journal of Biological Inorganic Chemistry, 3, 520–526.

    Article  Google Scholar 

  • Gaonkar, T., & Bhosle, S. (2013). Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere, 93, 1835–1843.

    Google Scholar 

  • Gaonkar, T., Nayak, P., Garg, S., & Bhosle, S. (2012). Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. The Scientific World Journal, 2012, 1–8.

    Article  Google Scholar 

  • Godinho, A., & Bhosle, S. (2002). Diazotrophic bacteria associated with coastal sand dune vegetation. National conference of coastal agriculture research. 6–7 April. ICAR Research Complex for Goa.

    Google Scholar 

  • Guan, L. L., Kanoh, K., & Kamino, K. (2001). Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Applied Environmental Microbiology, 67, 1710–1717.

    Article  Google Scholar 

  • Harrington, J. M., & Crumbliss, A. L. (2009). The redox hypothesis in siderophore-mediated iron uptake. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 22, 679–689.

    Article  Google Scholar 

  • Hickford, S. J. H., Kuepper, F. C., Zhang, G., Carrano, C. J., Blunt, J. W., & Butler, A. (2004). Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. Journal of Natural Products, 67, 1897–1899.

    Article  Google Scholar 

  • Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27, 637–657.

    Article  Google Scholar 

  • Homann, V. V., Sandy, M., Tincu, J. A., Templeton, A. S., Tebo, B. M., & Butler, A. (2009). Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. Journal of Natural Products, 72, 884–888.

    Article  Google Scholar 

  • Hossain, H. Z., Aziz, C. B., & Saha, M. L. (2012). Relationships between soil physic chemical properties and total viable bacterial counts in Sunderban mangrove forests, Bangladesh. Dhaka Univ. Journal of Biological Sciences, 21, 169–175.

    Google Scholar 

  • Hu, X., & Boyer, G. L. (1996). Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Applied and Environmental Microbiology, 62, 4044–4048.

    Google Scholar 

  • Hussain, K. A., & Joo, J. H. (2014). Potential of siderophore production by bacteria isolated from heavy metal: Polluted and rhizhosphere soils. Current Microbiology, 6, 717–723.

    Article  Google Scholar 

  • Ito, Y., & Butler, A. (2005). Structure of synechobactins, new siderophores of the marine Cyanobacterium Synechococcus sp. PCC 7002. Limnology and Oceanography, 50, 1918–1923.

    Article  Google Scholar 

  • Kim, E. J., Sabra, W., & Zeng, A. P. (2003). Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology (Reading, England), 149, 2627–2634.

    Article  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demostration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301–307.

    Google Scholar 

  • Kupper, F. C., Carrano, C. J., Kuhn, J. U., & Butler, A. (2006). Photoreactivity of iron(III)-aerobactin: Photoproduct structure and iron(III) coordination. Inorganic Chemistry, 45, 6028–6033.

    Article  Google Scholar 

  • Laine, M. H., Karwoski, M. T., Raaska, L., & Mattila-Sandholm, T. (1996). Antimicrobial activity of Pseudomonas spp. against food poisoning bacteria and moulds. Letters in Applied Microbiology, 22, 214–218.

    Article  Google Scholar 

  • Li, X. Z., Nikaido, H., & Williams, K. E. (1997). Silver resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. Journal of Bacteriology, 179, 6127–6132.

    Google Scholar 

  • Light, P. A., & Clegg, R. A. (1974). Metabolism in iron limited growth. In J. B. Neilands (Ed.), Microbial iron metabolism (1st ed., pp. 35–61). New York: Academic Press.

    Google Scholar 

  • Lutkenhaus, J. F. (1977). Role of a major outer membrane protein in Escherichia coli. Journal of Bacteriology, 131, 631–637.

    Google Scholar 

  • Manninen, E., & Mattila-Sandholm, T. (1994). Methods for the detection of Pseudomonas siderophores. Journal of Microbiological Methods, 19, 223–234.

    Article  Google Scholar 

  • Martin, J. D., Ito, Y., Homann, V. V., Haygood, M. G., & Butler, A. (2006). Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. Journal of Biological Inorganic Chemistry, 11, 633–641.

    Article  Google Scholar 

  • Martinez, J. S., Carter-Franklin, J. N., Mann, E. L., Martin, J. D., Haygood, M. G., & Butler, A. (2003). Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proceedings of the National Academy of Sciences of United States of America, 100, 3754–3759.

    Google Scholar 

  • Messenger, A. J. M., & Ratledge, C. (1985). Siderophores. –In M. Moo-Youg (Ed.), Comprehensive biotechnology (Vol. 3, pp. 275–294). Pergamon Press, New York.

    Google Scholar 

  • Meyer, J. M., & Abdallah, M. A. (1978). The fluorescent pigment of Pseudomonas fluorescens. Biosynthesis, purification and physicochemical properties. Journal of General Microbiology, 107, 319–328.

    Article  Google Scholar 

  • Morris, J., O’Sullivan, D. J., Koster, M., Leong, J., Weisbeek, P. J., & O’Gara, F. (1992). Characterization of fluorescent siderophore-mediated iron uptake in Pseudomonas sp.strain M114: Evidence for the existence of an additional ferric siderophore receptor. Applied and Environmental Microbiology, 58, 630–635.

    Google Scholar 

  • Neilands, J. B. (1984). Siderophores of bacteria and fungi. Microbiological Sciences, 1, 9–14.

    Google Scholar 

  • Nowak-Thompson, B., & Gould, S. J. (1994). A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin. BioMetals, 7, 20–24.

    Article  Google Scholar 

  • Nozaki, M., & Ishimura, Y. (1974). Oxygenases. In J. B. Neilands (Ed.), Microbial iron metabolism (1st ed., pp. 417–441). New York: Academic Press.

    Google Scholar 

  • Ochsner, U. A., Wilderman, P. J., Vasil, A. I., & Vasil, M. L. (2002). Gene ChipR expression analysis of the iron starvation response in Pseudomonas aeruginosa: Identification of novel pyoverdine biosynthesis genes. Molecular Microbiology, 45, 1277–1287.

    Article  Google Scholar 

  • Palleroni, N. J. (1984). Family I Pseudomonadaceae. In N.R. Krieg, J.G. Holt (Eds.), Bergey’s manual of systematic bacteriology (Vol. 1, pp. 141–199). Baltimore: The Williams and Wilkins.

    Google Scholar 

  • Pugsley, A. P., & Schnaitman, C. A. (1978). Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. Journal of Bacteriology, 133, 1181–1189.

    Google Scholar 

  • Ramanathan, A. L., G, Singh., Majumdar, J., Samal, A. C., Chauhan, R., Ranjan, R. K., Rajkumar, K., & Santra, S. C. (2008). A study of microbial diversity and its interaction with nutrients in the sediments of Sunderban mangroves. Indian Journal of Marine Sciences, 37, 159–165.

    Google Scholar 

  • Rawte, T., Padte, M., & Mavinkurve, S. (2002). Incidence of marine and mangrove bacteria accumulating polyhydroxyalkanoates on the mid-west coast of India. World Journal of Microbiology and Biotechnology, 18, 655–659.

    Article  Google Scholar 

  • Raymond, K. N., & Dertz, E. (2004). Biochemical and physical properties of siderophores. In J. H. Crosa, A. R. Mey & S. M. Payne (Eds.), Iron transport in bacteria (1st edn., pp. 3–17). Washington, DC: ASM press.

    Google Scholar 

  • Reid, C. P., Szaniszlo, P. J., & Crowley, D. E. (1986). Siderophore involvement in plant iron nutrition. In T. R. Swinburne (Ed.), Iron siderophores and plant diseases (pp. 29–42). New York: Plenum Press.

    Google Scholar 

  • Sandy, M., & Butler, A. (2009). Microbial iron acquisition: Marine and terrestrial siderophores. Chemical Reviews, 109, 4580–4595.

    Article  Google Scholar 

  • Sharma, A., & Johri, B. N. (2003). Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research, 15, 243–248.

    Article  Google Scholar 

  • Song, J., Sung, J., Kim, Y. M., Zylstra, G. J., & Kim, E. (2000). Roles of the meta- and the ortho-Cleavage pathways for the efficient utilization of aromatic hydrocarbons by Sphingomonas yanoikuyae B1. The Journal of Microbiology, 38, 245–249.

    Google Scholar 

  • Staijen, I. E., & Witholt, B. (1998). Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk + bacterial strains. Biotechnology Bioengineering, 57, 228–237.

    Article  Google Scholar 

  • Tank, N., & Saraf, M. (2009). Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Journal of Basic Microbiology, 49, 195–204.

    Article  Google Scholar 

  • Teitzel, G. M., Geddie, A., De Long, S. K., Kirisits, M. J., Whiteley, M., & Parsek, M. R. (2006). Survival and growth in the presence of elevated copper: Transcriptional profiling of copper-stressed Pseudomonas aeruginosa. Journal of Bacteriology, 188, 7242–7256.

    Article  Google Scholar 

  • Vasil, M. L., & Ochsner, U. A. (1999). The response of Pseudomonas aeruginosa to iron: Genetics, biochemistry and virulence. Molecular Microbiology, 34, 399–413.

    Article  Google Scholar 

  • Villegas, M., Villa, P., & Frías, A. (2002). Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Revista Latinoamericana de Microbiologia, 44, 112–117.

    Google Scholar 

  • Visca, P., Ciervo, A., Sanfilippo, V., & Orsi, N. (1993). Iron-regulated salicylate synthesis by Pseudomonas spp. Journal of General Microbiology, 139, 1995–2001.

    Article  Google Scholar 

  • Vraspir, J. M., & Butler, A. (2008). Chemistry of marine ligands and siderophores. Annual Review of Marine Science, 1, 43–63.

    Article  Google Scholar 

  • Wandersman, C., & Delepelaire, P. (2004). Bacterial iron sources: From siderophores to hemophores. Annual Review of Microbiology, 58, 611–647.

    Article  Google Scholar 

  • Wang, Y., Brown, H. N., Crowley, D., & Szaniszlo, P. J. (1993). Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environment, 16, 579–585.

    Article  Google Scholar 

  • Xiao, R., & Kisaalita, W. S. (1998). Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion. Applied and Environmental Microbiology, 64, 1472–1476.

    Google Scholar 

  • Zeyaullah, M., Abdelkafe, A. S., Zabya, W. B., & Ali, A. (2009). Biodegradation of catechols by micro-organisms-a short review. African Journal of Biotechnology, 8, 2916–2922.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teja Gaonkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaonkar, T. (2015). Eubacterial Siderophores and Factors Modulating Their Production. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_2

Download citation

Publish with us

Policies and ethics