Coastal Sand Dunes: A Potential Goldmine of Bioresources



Coastal sand dunes are nutrient deficient and experience severe stresses. Yet, sand dune plants or psammophytes adapt to the prevailing stress conditions and are able to proliferate in these dunes. Plant communities in sand dunes are controlled by the interaction between biotic and physicochemical components of the sand matrix. Interactions with microbes appear crucial in obtaining inorganic nutrients or growth-influencing substances.

A large number of bacteria are associated with rhizosphere and with vegetation as endophytes growing on coastal sand dunes. The distribution of activities among the different genera in this study reflected that most of the predominant isolates belong to Bacillus, Brevibacterium, Brochothrix, Cellulomonas, Kocuria, and Microbacterium genera. Among the sand dune isolates, four, highly promising eubacteria, were selected to reveal their plant-growth-promoting traits. Interestingly, Bacillus subtilis, Kocuria rosea, and Microbacterium arborescens were found to have a significant effect on plant growth promotion of Solanum melongena (eggplant), an important agricultural crop. This study has also shown the production of two exopolymers from M. arborescens that aggregate sand particles directly supporting plant growth. Plant-growth-promoting rhizobacteria (PGPR) from sand dunes, therefore, present an alternative to the use of chemicals for enhancement of growth. This work has demonstrated that sand dune rhizobacteria could have an important role in agriculture and horticulture in improving crop productivity.


Sand dune Rhizosphere Exopolysaccharide Soil aggregation Plant-growth-promoting rhizobacteria 


  1. Armstrong, G. A. (1997). Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annual Reviews of Microbiology (Reading, England), 51, 629–659.CrossRefGoogle Scholar
  2. Aslim, B., Yuksekdag, Z. N., & Beyatli, Y. (2002). Determination of PHB growth quantities of certain Bacillus species isolated from soil. Turkish Electronic Journal of Biotechnology, Special Issue, p. 24–30.Google Scholar
  3. Beena, K. R., Raviraja, N. S., Arun, A. B., & Sridhar, K. R. (2000). Diversity of arbuscularmycorrhizal fungi on the coastal sand dunes of the west coast of India. Current Science, 79, ­1459–1466.Google Scholar
  4. Bellis, P., & Ercolani, G. L. (2001). Growth interactions during bacterial colonization of seedling rootlets. Applied and Environmental Microbiology, 67, 1945–1948.CrossRefGoogle Scholar
  5. Berlanga, M., Montero, M. T., Fernandez-Borelland, J., & Guerrero, R. (2006). Rapid ­spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. ­International Microbiology, 9, 95–102.Google Scholar
  6. Bhosale, P. (2004). Environmental and cultural stimulants in the production of carotenoids from microorganisms. Applied Microbiology and Biotechnology, 63, 351–361.CrossRefGoogle Scholar
  7. Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170–177.CrossRefGoogle Scholar
  8. Boorman, A. L. (1977). Sand dunes. In K. S. R. Barnes (Ed.), The Coastline (pp. 161–197). ­London: Wiley.Google Scholar
  9. Braun, V., & Braun, M. (2002). Active transport of iron and siderophore antibiotics. Current ­Opinion in Microbiology, 5, 194–201.CrossRefGoogle Scholar
  10. Britton, G. (1995). Structure and properties of carotenoids in relation to function. FASEB Journal, 9, 1551–1558.Google Scholar
  11. Chandrasekaran, M. (1997). Industrial enzymes from marine microorganisms: The Indian ­scenario. Journal of Marine Biotechnology, 5, 86–89.Google Scholar
  12. Daane, L. L., Harjono, I., Zylstra, G. J., & Haggblom, M. M. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon degrading bacteria associated with the rhizosphere of salt marsh plants. Applied and Environmental Microbiology, 67, 2683–2691.CrossRefGoogle Scholar
  13. Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E., & Kennedy. C. (2004). Endophytic ­nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology and Ecology, 49, 469–479.CrossRefGoogle Scholar
  14. Demain, A. L. (1998). Induction of microbial secondary metabolism. International Microbiology, 1, 259–264.Google Scholar
  15. Desai, K. N., & Untawale, A. G. (2002). Sand dune vegetation of Goa: Conservation and management. Botanical Society of Goa, 2002.Google Scholar
  16. Desai, R. S., Krishnamurthy, N. K., Mavinkurve, S., & Bhosle, S. (2004). Alkaliphiles in estuarine mangrove regions, (central west coast of India). Indian Journal of Marine Sciences, 33, 177–180.Google Scholar
  17. Fabiano, M., & Danovara, R. (1998). Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Applied and Environmental ­Microbiology, 64, 3838–3845.Google Scholar
  18. Faraldo-Gómez, J. D., & Sansom, M. S. P. (2003). Acquisition of siderophores in gram-negative bacteria. Nature Reviews in Molecular Cell Biology, 4, 105–116.CrossRefGoogle Scholar
  19. Frankenberger, W. T. Jr., & Arshad, M. (1995). Phytohormones in soils: Microbial production and function. NewYork: Marcel Dekker, p 503.Google Scholar
  20. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.CrossRefGoogle Scholar
  21. Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251, 1–7.CrossRefGoogle Scholar
  22. Godinho, A., & Bhosle, S. (2008). Carotenes produced by alkaliphilic orange pigmented strain of Microbacterium arborescens—AGSB isolated from coastal sand dunes. Indian Journal of Marine Sciences, 37, 307–312.Google Scholar
  23. Godinho, L. A., & Bhosle, S. (2009). Sand aggregation by exopolysaccharide producing ­Microbacterium arborescens—AGSB. Current Microbiology, 58, 616–621.CrossRefGoogle Scholar
  24. Godinho, L. A., & Bhosle, S. (2013a). Rhizosphere bacteria from coastal sand dunes and their ­applications in agriculture. In K. M. Dinesh, M. M. Saraf, A. Aeron (Eds.), Bacteria in ­Agrobiology: Crop productivity (pp. 77–96). Berlin: Springer.CrossRefGoogle Scholar
  25. Godinho, L. A., & Bhosle, S. (2013b). Microbacterium arborescens AGSB sp. nov from the ­rhizosphere of sand dune plant, Ipomoea pes caprae. African Journal of Microbiology ­Research, 7, 5154–5158.Google Scholar
  26. Godinho, A., Ramesh, R., & Bhosle, S. (2010). Bacteria from sand dunes of Goa promoting growth in eggplant. World Journal of Agricultural Sciences, 6(5):555–564.Google Scholar
  27. Gómez, E., & Gomez, S. (2003). Plant growth- promoting bacteria promote copper and iron ­translocation from root to shoot in alfalfa seedlings. Journal of Plant Nutrition, 26, 1801–1814.Google Scholar
  28. Grossmann, K. (1996). A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiology of Plant, 97, 772–775.CrossRefGoogle Scholar
  29. Guerinot, M. L., Meidl, E. J., & Plessner, O. (1990). Citrate a a siderophore in Bradyrhizobium japonicum. Journal of Bacteriology, 172, 3298–3303.Google Scholar
  30. Hammond, R. K., & White, D. C. (1970). Carotenoid formation by Staphylococcus aureus. ­Journal of Bacteriology, 103, 191–198.Google Scholar
  31. Hontzeasa, N., Richardson, A. O., Belimov, A., Safronova, V., Abu-Omar, M. M., & Glick, B. R. (2005). Evidence for horizontal transfer of 1-Aminocyclopropane-1-Carboxylate deaminase genes. Applied and Environmental Microbiology, 71, 7556–7558.CrossRefGoogle Scholar
  32. Kampert, M., Strzelczyk, E., & Pokojska, A. (1975). Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.) and from soil. Acta Microbiologica ­Polonica, 7, 135–143.Google Scholar
  33. Khan, K., Naeem, M., Javed Arshed, M., & Asif, M. (2006). Extraction and characterisaton of oil degrading bacteria. Journal of Applied Sciences, 6, 2302–2306.CrossRefGoogle Scholar
  34. Kremer, R. J., & Souissi, T. (2001). Cyanide production by rhizobacteria and potential for ­suppression of weed seedling growth. Current Microbiology, 43, 182–186.CrossRefGoogle Scholar
  35. Lee, M. S., Do, J. O., Park, M. S., Jung, S., Lee, K. H., Bae, K. S., Park, S. J., Kim, S. B. (2006). Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, ­Calystegia soldanella and Elymus mollis. Antonie van Leeuwenhoek, 90, 19–27.CrossRefGoogle Scholar
  36. Leveau, J. H. J., & Lindow, S. E. (2005). Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiology, 71, 2345–2371.CrossRefGoogle Scholar
  37. Lindow, S. E., Desurmont, C., Elkins, R., McGourty, G., Clark, E., & Brandl, M. T. (1998). ­Occurrence of indole-3-Acetic Acid producing bacteria on pear trees and their association with fruit russet. Phytopathology, 88, 1149–1157.CrossRefGoogle Scholar
  38. Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.CrossRefGoogle Scholar
  39. Loper, J. E., & Schroth, M. N. (1986). Influence of bacterial sources of indole-2-aceticacid on root elongation of sugar beet. Phytopathology, 76, 386–389.CrossRefGoogle Scholar
  40. McCoy, M. M. (2000). Determination of the presence of the catabolic alkane monooxygenase Gene from soil microorganisms isolated from coastal s and dunes. A Senior Project. Center for coastal marine sciences. California polytechnic state university. San Luis Obispo.Google Scholar
  41. Mehta, S., & Nautiyal, S. C. (2001). An efficient method for qualitative screening of phosphate solubilising bacteria. Current Microbiology, 43, 51–56.CrossRefGoogle Scholar
  42. Neilands, J. B. (1995). Siderophores: Structure and function of microbial iron transport ­compounds. Journal of Biological Chemistry, 270, 26723–26726.CrossRefGoogle Scholar
  43. Nelis, H. J., & De Leenbeer, A. P. (1991). Microbial sources of carotenoid pigments used in foods and feeds. Journal of Applied Bacteriology, 70, 181–191.CrossRefGoogle Scholar
  44. Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor. doi: 10.1094/PHI-A-2006-1117-02.Google Scholar
  45. Park, M. S., Jung, S. R., Lee, M. S., Kim, K. O., Do, J. O., Lee, K. H., Kim, S. B., & Bae, K. S. (2005). Isolation and characterization of bacteria associated with two s and dune plant species, Calystegia soldanella and Elymus mollis. The Journal of Microbiology, 43, 219–227.Google Scholar
  46. Park, M. S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B., & Bae, K. S. (2006). ­Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., ­isolated from roots of sand-dune plants. International Journal of Systematic and Evolutionary ­Microbiology, 56, 433–438.CrossRefGoogle Scholar
  47. Patten, C., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.CrossRefGoogle Scholar
  48. Postgate, J. R. (1982). Biological nitrogen fixation: Fundamentals. Philosophical Transactions of the Royal Society of London. Series B, 296, 375–385.CrossRefGoogle Scholar
  49. Prince, R. C. (1993). Petroleum spill bioremediation in marine environments. Critical Reviews of Microbiology (Reading, England), 19, 217–242.CrossRefGoogle Scholar
  50. Roberson, E. B., & Firestone, M. K. (1992). Relationship between dessication and exoploysaccharide production in a soil Pseudomonas sps. Applied and Environmental Microbiology, 58, 1284–1291.Google Scholar
  51. Saikia, S. P., & Jain, V. (2007). Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Current Science, 92, 317–322.Google Scholar
  52. Sikkema, J., de Bont, J. A. M., & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269, 8022–8028.Google Scholar
  53. Sikkema, J., de Bont, J. A. M., & Poolman, B. (1995). Mechanisms of membrane toxicity of ­hydrocarbons. Microbiological Reviews, 59, 201–222.Google Scholar
  54. Strand, A., Shivaji, S., & Liaaen-Jensen, S. (1997). Bacterial carotenoids 55: C50- carotenoids. 25. Revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochemical Systematic Ecology, 25, 547–552.CrossRefGoogle Scholar
  55. Sylvia, D. M., & Burks, N. J. (1988). Selection of a vesicular-arbuscular mycorrhizal fungus for practical inoculation of Uniola paniculata. Mycologia, 80, 565–568.CrossRefGoogle Scholar
  56. Tilak, R. B. V. K., Ranganayaki, N., Pal, K. K., De, K. A., Saxena, R., Shekhar Nautiyal, C., Mittal, S., Tripathi, A. K., & Johri, B. N. (2006). Diversity of plant growth and soil health supporting bacteria. Current Science, 89, 136–150.Google Scholar
  57. Van veen, J. A., Van Overbeek, L. S., & van Elsas J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121–135.Google Scholar
  58. Voisard, C., Keel, C., Haas, D., & Dèfago, G. (1989). Cyanide production by Pseudomonas ­fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO ­Journal, 8, 351–358.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations