Skip to main content

Coastal Sand Dunes: A Potential Goldmine of Bioresources

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria
  • 507 Accesses

Abstract

Coastal sand dunes are nutrient deficient and experience severe stresses. Yet, sand dune plants or psammophytes adapt to the prevailing stress conditions and are able to proliferate in these dunes. Plant communities in sand dunes are controlled by the interaction between biotic and physicochemical components of the sand matrix. Interactions with microbes appear crucial in obtaining inorganic nutrients or growth-influencing substances.

A large number of bacteria are associated with rhizosphere and with vegetation as endophytes growing on coastal sand dunes. The distribution of activities among the different genera in this study reflected that most of the predominant isolates belong to Bacillus, Brevibacterium, Brochothrix, Cellulomonas, Kocuria, and Microbacterium genera. Among the sand dune isolates, four, highly promising eubacteria, were selected to reveal their plant-growth-promoting traits. Interestingly, Bacillus subtilis, Kocuria rosea, and Microbacterium arborescens were found to have a significant effect on plant growth promotion of Solanum melongena (eggplant), an important agricultural crop. This study has also shown the production of two exopolymers from M. arborescens that aggregate sand particles directly supporting plant growth. Plant-growth-promoting rhizobacteria (PGPR) from sand dunes, therefore, present an alternative to the use of chemicals for enhancement of growth. This work has demonstrated that sand dune rhizobacteria could have an important role in agriculture and horticulture in improving crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong, G. A. (1997). Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annual Reviews of Microbiology (Reading, England), 51, 629–659.

    Article  Google Scholar 

  • Aslim, B., Yuksekdag, Z. N., & Beyatli, Y. (2002). Determination of PHB growth quantities of certain Bacillus species isolated from soil. Turkish Electronic Journal of Biotechnology, Special Issue, p. 24–30.

    Google Scholar 

  • Beena, K. R., Raviraja, N. S., Arun, A. B., & Sridhar, K. R. (2000). Diversity of arbuscularmycorrhizal fungi on the coastal sand dunes of the west coast of India. Current Science, 79, ­1459–1466.

    Google Scholar 

  • Bellis, P., & Ercolani, G. L. (2001). Growth interactions during bacterial colonization of seedling rootlets. Applied and Environmental Microbiology, 67, 1945–1948.

    Article  Google Scholar 

  • Berlanga, M., Montero, M. T., Fernandez-Borelland, J., & Guerrero, R. (2006). Rapid ­spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. ­International Microbiology, 9, 95–102.

    Google Scholar 

  • Bhosale, P. (2004). Environmental and cultural stimulants in the production of carotenoids from microorganisms. Applied Microbiology and Biotechnology, 63, 351–361.

    Article  Google Scholar 

  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170–177.

    Article  Google Scholar 

  • Boorman, A. L. (1977). Sand dunes. In K. S. R. Barnes (Ed.), The Coastline (pp. 161–197). ­London: Wiley.

    Google Scholar 

  • Braun, V., & Braun, M. (2002). Active transport of iron and siderophore antibiotics. Current ­Opinion in Microbiology, 5, 194–201.

    Article  Google Scholar 

  • Britton, G. (1995). Structure and properties of carotenoids in relation to function. FASEB Journal, 9, 1551–1558.

    Google Scholar 

  • Chandrasekaran, M. (1997). Industrial enzymes from marine microorganisms: The Indian ­scenario. Journal of Marine Biotechnology, 5, 86–89.

    Google Scholar 

  • Daane, L. L., Harjono, I., Zylstra, G. J., & Haggblom, M. M. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon degrading bacteria associated with the rhizosphere of salt marsh plants. Applied and Environmental Microbiology, 67, 2683–2691.

    Article  Google Scholar 

  • Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E., & Kennedy. C. (2004). Endophytic ­nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology and Ecology, 49, 469–479.

    Article  Google Scholar 

  • Demain, A. L. (1998). Induction of microbial secondary metabolism. International Microbiology, 1, 259–264.

    Google Scholar 

  • Desai, K. N., & Untawale, A. G. (2002). Sand dune vegetation of Goa: Conservation and management. Botanical Society of Goa, 2002.

    Google Scholar 

  • Desai, R. S., Krishnamurthy, N. K., Mavinkurve, S., & Bhosle, S. (2004). Alkaliphiles in estuarine mangrove regions, (central west coast of India). Indian Journal of Marine Sciences, 33, 177–180.

    Google Scholar 

  • Fabiano, M., & Danovara, R. (1998). Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Applied and Environmental ­Microbiology, 64, 3838–3845.

    Google Scholar 

  • Faraldo-Gómez, J. D., & Sansom, M. S. P. (2003). Acquisition of siderophores in gram-negative bacteria. Nature Reviews in Molecular Cell Biology, 4, 105–116.

    Article  Google Scholar 

  • Frankenberger, W. T. Jr., & Arshad, M. (1995). Phytohormones in soils: Microbial production and function. NewYork: Marcel Dekker, p 503.

    Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    Article  Google Scholar 

  • Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251, 1–7.

    Article  Google Scholar 

  • Godinho, A., & Bhosle, S. (2008). Carotenes produced by alkaliphilic orange pigmented strain of Microbacterium arborescens—AGSB isolated from coastal sand dunes. Indian Journal of Marine Sciences, 37, 307–312.

    Google Scholar 

  • Godinho, L. A., & Bhosle, S. (2009). Sand aggregation by exopolysaccharide producing ­Microbacterium arborescens—AGSB. Current Microbiology, 58, 616–621.

    Article  Google Scholar 

  • Godinho, L. A., & Bhosle, S. (2013a). Rhizosphere bacteria from coastal sand dunes and their ­applications in agriculture. In K. M. Dinesh, M. M. Saraf, A. Aeron (Eds.), Bacteria in ­Agrobiology: Crop productivity (pp. 77–96). Berlin: Springer.

    Chapter  Google Scholar 

  • Godinho, L. A., & Bhosle, S. (2013b). Microbacterium arborescens AGSB sp. nov from the ­rhizosphere of sand dune plant, Ipomoea pes caprae. African Journal of Microbiology ­Research, 7, 5154–5158.

    Google Scholar 

  • Godinho, A., Ramesh, R., & Bhosle, S. (2010). Bacteria from sand dunes of Goa promoting growth in eggplant. World Journal of Agricultural Sciences, 6(5):555–564.

    Google Scholar 

  • Gómez, E., & Gomez, S. (2003). Plant growth- promoting bacteria promote copper and iron ­translocation from root to shoot in alfalfa seedlings. Journal of Plant Nutrition, 26, 1801–1814.

    Google Scholar 

  • Grossmann, K. (1996). A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiology of Plant, 97, 772–775.

    Article  Google Scholar 

  • Guerinot, M. L., Meidl, E. J., & Plessner, O. (1990). Citrate a a siderophore in Bradyrhizobium japonicum. Journal of Bacteriology, 172, 3298–3303.

    Google Scholar 

  • Hammond, R. K., & White, D. C. (1970). Carotenoid formation by Staphylococcus aureus. ­Journal of Bacteriology, 103, 191–198.

    Google Scholar 

  • Hontzeasa, N., Richardson, A. O., Belimov, A., Safronova, V., Abu-Omar, M. M., & Glick, B. R. (2005). Evidence for horizontal transfer of 1-Aminocyclopropane-1-Carboxylate deaminase genes. Applied and Environmental Microbiology, 71, 7556–7558.

    Article  Google Scholar 

  • Kampert, M., Strzelczyk, E., & Pokojska, A. (1975). Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.) and from soil. Acta Microbiologica ­Polonica, 7, 135–143.

    Google Scholar 

  • Khan, K., Naeem, M., Javed Arshed, M., & Asif, M. (2006). Extraction and characterisaton of oil degrading bacteria. Journal of Applied Sciences, 6, 2302–2306.

    Article  Google Scholar 

  • Kremer, R. J., & Souissi, T. (2001). Cyanide production by rhizobacteria and potential for ­suppression of weed seedling growth. Current Microbiology, 43, 182–186.

    Article  Google Scholar 

  • Lee, M. S., Do, J. O., Park, M. S., Jung, S., Lee, K. H., Bae, K. S., Park, S. J., Kim, S. B. (2006). Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, ­Calystegia soldanella and Elymus mollis. Antonie van Leeuwenhoek, 90, 19–27.

    Article  Google Scholar 

  • Leveau, J. H. J., & Lindow, S. E. (2005). Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiology, 71, 2345–2371.

    Article  Google Scholar 

  • Lindow, S. E., Desurmont, C., Elkins, R., McGourty, G., Clark, E., & Brandl, M. T. (1998). ­Occurrence of indole-3-Acetic Acid producing bacteria on pear trees and their association with fruit russet. Phytopathology, 88, 1149–1157.

    Article  Google Scholar 

  • Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  Google Scholar 

  • Loper, J. E., & Schroth, M. N. (1986). Influence of bacterial sources of indole-2-aceticacid on root elongation of sugar beet. Phytopathology, 76, 386–389.

    Article  Google Scholar 

  • McCoy, M. M. (2000). Determination of the presence of the catabolic alkane monooxygenase Gene from soil microorganisms isolated from coastal s and dunes. A Senior Project. Center for coastal marine sciences. California polytechnic state university. San Luis Obispo.

    Google Scholar 

  • Mehta, S., & Nautiyal, S. C. (2001). An efficient method for qualitative screening of phosphate solubilising bacteria. Current Microbiology, 43, 51–56.

    Article  Google Scholar 

  • Neilands, J. B. (1995). Siderophores: Structure and function of microbial iron transport ­compounds. Journal of Biological Chemistry, 270, 26723–26726.

    Article  Google Scholar 

  • Nelis, H. J., & De Leenbeer, A. P. (1991). Microbial sources of carotenoid pigments used in foods and feeds. Journal of Applied Bacteriology, 70, 181–191.

    Article  Google Scholar 

  • Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor. doi: 10.1094/PHI-A-2006-1117-02.

    Google Scholar 

  • Park, M. S., Jung, S. R., Lee, M. S., Kim, K. O., Do, J. O., Lee, K. H., Kim, S. B., & Bae, K. S. (2005). Isolation and characterization of bacteria associated with two s and dune plant species, Calystegia soldanella and Elymus mollis. The Journal of Microbiology, 43, 219–227.

    Google Scholar 

  • Park, M. S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B., & Bae, K. S. (2006). ­Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., ­isolated from roots of sand-dune plants. International Journal of Systematic and Evolutionary ­Microbiology, 56, 433–438.

    Article  Google Scholar 

  • Patten, C., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.

    Article  Google Scholar 

  • Postgate, J. R. (1982). Biological nitrogen fixation: Fundamentals. Philosophical Transactions of the Royal Society of London. Series B, 296, 375–385.

    Article  Google Scholar 

  • Prince, R. C. (1993). Petroleum spill bioremediation in marine environments. Critical Reviews of Microbiology (Reading, England), 19, 217–242.

    Article  Google Scholar 

  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between dessication and exoploysaccharide production in a soil Pseudomonas sps. Applied and Environmental Microbiology, 58, 1284–1291.

    Google Scholar 

  • Saikia, S. P., & Jain, V. (2007). Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Current Science, 92, 317–322.

    Google Scholar 

  • Sikkema, J., de Bont, J. A. M., & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269, 8022–8028.

    Google Scholar 

  • Sikkema, J., de Bont, J. A. M., & Poolman, B. (1995). Mechanisms of membrane toxicity of ­hydrocarbons. Microbiological Reviews, 59, 201–222.

    Google Scholar 

  • Strand, A., Shivaji, S., & Liaaen-Jensen, S. (1997). Bacterial carotenoids 55: C50- carotenoids. 25. Revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochemical Systematic Ecology, 25, 547–552.

    Article  Google Scholar 

  • Sylvia, D. M., & Burks, N. J. (1988). Selection of a vesicular-arbuscular mycorrhizal fungus for practical inoculation of Uniola paniculata. Mycologia, 80, 565–568.

    Article  Google Scholar 

  • Tilak, R. B. V. K., Ranganayaki, N., Pal, K. K., De, K. A., Saxena, R., Shekhar Nautiyal, C., Mittal, S., Tripathi, A. K., & Johri, B. N. (2006). Diversity of plant growth and soil health supporting bacteria. Current Science, 89, 136–150.

    Google Scholar 

  • Van veen, J. A., Van Overbeek, L. S., & van Elsas J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121–135.

    Google Scholar 

  • Voisard, C., Keel, C., Haas, D., & Dèfago, G. (1989). Cyanide production by Pseudomonas ­fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO ­Journal, 8, 351–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aureen L. Godinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Godinho, A. (2015). Coastal Sand Dunes: A Potential Goldmine of Bioresources. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_1

Download citation

Publish with us

Policies and ethics