Prevalence of Listeria in Milk from Farm to Table



Listeria monocytogenes is a food-borne pathogen of great concern for the food-producing companies. This Gram-positive bacterium is the causative agent of listeriosis, a highly fatal opportunistic food-borne infection. L. monocytogenes causes listeriosis in humans characterised by invasive and noninvasive illness, associated with high mortality (20–30 %) and has a propensity to cause severe problems, especially in pregnant women, neonates, the elderly and immuno-suppressed individuals. Thus, the presence of this pathogen in food is a major concern to the food industry and public health regulators. L. monocytogenes has been involved in numerous outbreaks of listeriosis occurring through consumption of milk and milk products. Hence, there is an urgent need from the dairy industry to understand the introduction of emerging food-borne pathogens in milk, and thus, in turn control and prevention of milk-borne epidemics and outbreaks.

A total of 767 milk samples from dairy cows were taken at different levels of collection and processing and were utilized for the isolation of Listeria. Overall, 10.56 % of the samples were positive for Listeria species and 37 isolates were designated as L. monocytogenes. Pulse-field gel electrophoresis (PFGE) was used to discriminate the L. monocytogenes isolates into 5 ApaI and 4 AscI PFGE patterns (pulsotypes). The ability to carry out epidemiological investigations to determine the primary sources of bacterial contamination is therefore important to improve public health.


Listeria monocytogenes Listeriolysin O Listeriosis PALCAM Pulse-field gel electrophoresis 


  1. Allerberger, F., & Wagner, M. (2010). Listeriosis: A resurgent foodborne infection. Clinical Microbiology and Infection, 16, 16–23.Google Scholar
  2. Anon. (2011). Deadliest U.S. foodborne illness outbreaks. Food saftey news. Accessed 8 Nov 2011.Google Scholar
  3. Audurier, A., & Martin, C. (1989). Phage typing of Listeria monocytogenes. International Journal of Food Microbiology, 8, 251–257.Google Scholar
  4. Aurora, R., Prakash, A., Prakash, S., Rawool, D. B., & Barbuddhe, S. B. (2008). Comparison of PIPLC based assays and PCR alongwith in-vivo pathogenicity tests for rapid detection of pathogenic Listeria monocytogenes. Food Control, 19, 641–647.Google Scholar
  5. Autio, T., Lundén, J., Fredriksson-Ahomaa, M., Björkroth, J., Sjöberg, A. M., & Korkeala, H. (2002). Similar Listeria monocytogenes pulsotypes detected in several foods originating from different sources. International Journal of Food Microbiology, 77, 83–90.Google Scholar
  6. Aznar, R., & Alarcón, B. (2002). On the specificity of PCR detection of Listeria monocytogenes in food: A comparison of published primers. Systematic and Applied Microbiology, 25, 109–119.Google Scholar
  7. Bakker, H., Warchocki, S., Wright, E., Allred, A., Ahlstrom, C., Manuel, C., Stasiewicz, M., Burrell, A., Roof, S., Strawn, L., Fortes, E., Nightingale, K., Kephart, D., & Wiedmann, M. (2014). Five new species of Listeria (L. floridensis sp. nov, L. aquatica sp. nov., L. cornellensis sp. nov. L. riparia sp. nov., and L. grandensissp. nov.) from agricultural and natural environments in the United States. International Journal of Systems Evolutionary Microbiology, 64(Pt 6), 1882–1889.Google Scholar
  8. Bansal, B. K., & Gupta, D. K. (2009). Economic analysis of Bovine Mastitis in India and Punjab – A Review. Ind. J. Dairy Sci., 62, 337–344.Google Scholar
  9. Barbuddhe, S. B., & Chakraborty, T. (2009). Listeria as an enteroinvasive gastrointestinal pathogen. Current Topics in Microbiology and Immunology, 337, 173–195.Google Scholar
  10. Barbuddhe, S. B., Malik, S. V. S., Bhilegaonkar, K. N., Prahlad, K., & Gupta, L. K. (2000). Isolation of Listeria monocytogenes and anti-listeriolysin O detection in sheep and goats. Small Ruminant Research, 38, 151–155.Google Scholar
  11. Barbuddhe, S. B., Chaudhari, S. P., & Malik, S. V. S. (2002). The occurrence of pathogenic Listeria monocytogenes and antibodies against listeriolysin O in buffaloes. Journal of Veterinary Medicine, 49, 181–184.Google Scholar
  12. Barbuddhe, S. B., Maier, T., Schwarz, G., Kostrzewa, M., Domann, E., Chakraborty, T., & Hain, T. (2008). Rapid identification and typing of Listeria species using matrix assisted laser desorption ionisation-time of flight mass spectrometry. Applied and Environmental Microbiology, 74, 5402–5407.Google Scholar
  13. Bemrah, N., Sanaa, M., Cassin, M. H., Griffiths, M. W., & Cerf, O. (1998). Quantitative risk assessment of human listeriosis from consumption of soft cheese made from raw milk. Preventive Veterinary Medicine, 37, 129–145.Google Scholar
  14. Bertsch, D., Rau, J., Eugster, M. R., Haug, M. C., Lawson, P. A., Lacroix, C., & Meile, L. (2013). Listeria fleischmannii sp. nov., isolated from cheese. International Journal of Systematic and Evolutionary Microbiology, 63, 526–532.Google Scholar
  15. Beumer, R. R., & Hazeleger, W. C. (2003). Listeria monocytogenes: Diagnostic problems. FEMS Immunology and Medical Microbiology, 35, 191–197.Google Scholar
  16. Bhagwat, A. A. (2003). Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Internatioanl Journal of Food Microbiology, 84, 217–224.Google Scholar
  17. Bhilegaonkar, K. N., Kulshreshtha, S. B., Kapoor, K. N., Kumar, A., Agarwal, R. K., & Singh, B. R. (1997). Isolation of Listeria monocytogenes from milk. Journal of Food Science and Technology, 34, 248–250.Google Scholar
  18. Bille, J., Catimel, B., Bannerman, E., Jacquet, C., Yersin, M. N., Caniaux, I., Monget, D., & Rocourt, J. (1992). API Listeria, a new and promising one-day system to identify Listeria isolates. Applied Environmental Microbiology, 58, 1857–1860.Google Scholar
  19. Blanco, M. B., FernandezGarayzabal, J. F., Dominguez, L., Briones, V., VazquezBoland, J. A., Blanco, J. L., Garcia, J. A., & Suarez, G. (1989). A technique for the direct identification of haemolytic pathogenic Listeria on selective plating media. Letters in Applied Microbiology, 9, 125128.Google Scholar
  20. Borucki, M. K., & Call, D. R. (2003). Listeria monocytogenes Serotype Identification by PCR. Journal of Clinical Microbiology, 41, 5537–5540.Google Scholar
  21. Brackett, R. E., & Beuchat, L. R. (1989). Methods and media for the isolation and cultivation of Listeria monocytogenes from various foods. International Journal of Food Microbiology, 8, 219–223.Google Scholar
  22. Buchanan, R. L., Stahl, H. G., Bencivingo, M. M., & Corral, F. D. (1989). Comparison of lithium chloridepheny lethanolmoxalactum and modified Vogel Johnson agars for detection of Listeria spp. in retail level meats, poultry and sea food. Applied and Environmental Microbiology, 55, 599603.Google Scholar
  23. Call, D. R., Borucki, M. K., & Loge, F. J. (2003). Detection of bacterial pathogens in environmental samples using DNA microarrays. Journal of Microbiological Methods, 53, 235–243.Google Scholar
  24. Camilli, A., Goldfine, H., & Portnoy, D. A. (1991). Listeria monocytogenes mutants lacking phosphatidylinositol specific phospholipase-C are avirulent. Journal of Experimental Medicine, 173, 751–754.Google Scholar
  25. Churchill, R. L., Lee, H., & Hall, J. C. (2005). Detection of Listeria monocytogenes and the toxin listeriolysin O in food. Journal of Microbiological Methods, 64, 141–170.Google Scholar
  26. Clark, A. G., & McLaughlin, J. (1997). Simple color tests based on an alanyl peptidase reaction which differentiate Listeria monocytogenes from other Listeria species. Journal of Clinical Microbiology, 35, 2155–2156.Google Scholar
  27. Cocolin, L., Rantsiou, K., Iacumin, L., Cantoni, C., & Comi, G. (2002). Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Applied and Environmental Microbiology, 68, 6273–6282.Google Scholar
  28. Corcoran, D., Clancy, D., O'Mahony, M., Grant, K., Hyland, E., Shanaghy, N., Whyte, P., McLauchlin, J., Moloney, A., & Fanning, S. (2006). Comparison of Listeria monocytogenes strain types in Irish smoked salmon and other foods. International Journal of Hygiene and Environmental Health, 209, 527–534.Google Scholar
  29. Curtis, G. D. W., & Lee, W. H. (1995). Culture media and methods for isolation of Listeria monocytogenes. International Journal of Food Microbiology, 26, 1–13.Google Scholar
  30. Curtis, G. D. W., Nichols, W. W., & Falla, T. J. (1989). Selective agents for Listeria can inhibit their growth. Letters in Applied Microbiology, 8, 169172.Google Scholar
  31. Dalton, C. B., Austin, C. C., Sobel, J., Hayes, P. S., Bibb, W. F., Graves, L. M., Swaminathan, B., Proctor, M. E., & Griffin, P. M. (1997). An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. The New England Journal of Medicine, 336, 100–106.Google Scholar
  32. D’Costa, D., Bhosle, S. N., Dhuri R.B. Kalekar, S., Rodrigues, J., Doijad, S. P., & Barbuddhe, S. B. (2012). The occurrence and characterization of Listeria species isolated from milk production chain. Milchwissenchaft, 67, 43–46.Google Scholar
  33. Di Bonaventura, G., Piccolomini, R., Paludi, D., D’Orio, V., Vergara, A., Conter, M., & Ianieri, A. (2008). Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. Journal of Applied Microbiology, 104, 1552–1561.Google Scholar
  34. Doijad, S. P., Barbuddhe, S. B., Garg, S., Kalekar, S., Rodrigues, J., D’Costa, D., Bhosle, S., & Chakraborty, T. (2011). Incidence and genetic variability of Listeria species from three milk processing plants. Food Control, 22, 1900–1904.Google Scholar
  35. Dominguez-Rodriguez, L., Suarez-Fernandez, G., Fernandez-Garayzobal, J., & Rodriguez-Ferri, E. (1984). New methodology for the isolation of Listeria monocytogenes from heavily contaminated environments. Applied and Environmental Microbiology, 47, 1188–1190.Google Scholar
  36. Donnelly, C. W., & Baigent, G. J. (1986). Method for flow cytometric detection of Listeria monocytogenes in milk. Applied and Environmental Microbiology, 52, 689–695.Google Scholar
  37. Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C., & Martin, P. (2004). Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. Journal of Clinical Microbiology, 42, 3819–3822.Google Scholar
  38. Doumith, M., Jacquet, C., Gerner-Smidt, P., Graves, L. M., Loncarevic, S., Mathisen, T., Morvan, A., Salcedo, C., Torpdahl, M., Vazquez, J. A., & Martin, P. (2005). Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: Toward an international standard. Journal of Food Protection, 68, 2648–2650.Google Scholar
  39. Farber, J. M., & Peterkin, P. I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiology Reviews, 55, 476–511.Google Scholar
  40. Fleming, D. W., Cochi, S. L., Mackonald, K. L., Brondum, J., Hayes, P. S., Plikaytis, B. D., Holmes, M. B., Audurier, A., Broome, C. V., & Reingold, A. L. (1985). Pasteurised milk as a vehicle of infection in an outbreak of listeriosis. The New England Journal of Medicine , 312, 404407.Google Scholar
  41. Fraser, J. A., & Sperber, W. H. (1988). Rapid detection of Listeria spp. in food and environmental samples by esculin hydrolysis. Journal of Food Protection, 51, 762765.Google Scholar
  42. Fretz, R., Pichler, J., Sagel, U., Much, P., Ruppitsch, W., Pietzka, A. T., Stöger, A., Huhulescu, S., Heuberger, S., Appl, G., Werber, D., Stark, K., Prager, R., Flieger, A., Karpísková, R., Pfaff, G., & Allerberger, F. (2010). Update: Multinational listeriosis outbreak due to ‘Quargel’, a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009–2010. Eurosurveillance, 15, 19543.Google Scholar
  43. Gardan, R., Cossart, P., & Labadie, J. (2003). Identification of Listeria monocytogenes genes involved in salt and alkaline-pH tolerance. Applied and Environmental Microbiology, 69, 3137–3143.Google Scholar
  44. Gasanov, U., Hughes, D., & Hansbro, P. M. (2005). Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: A review. FEMS Microbiology Reviews, 29, 851–875.Google Scholar
  45. Gilbreth, S. E., Call, J. E., Wallace, F. M., Scott, V. N., Chen, Y., & Luchansky, J. B. (2005). Relatedness of Listeria monocytogenes isolates recovered from selected ready-to-eat foods and listeriosis patients in the United States. Applied Environmental Microbiology, 71, 8115–8122.Google Scholar
  46. Golden, D. A., Beuchat, L. R., & Brackett, R. E. (1988). Evaluation of selective direct plating media for their suitability to recover uninjured, heat-injured, and freeze-injured Listeria monocytogenes from foods. Applied Environmental Microbiology, 54, 1451–1456.Google Scholar
  47. Graves, L. M., & Swaminathan, B. (2001). PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. International Journal of Food Microbiology, 65, 55–62.Google Scholar
  48. Graves, L. M., Swaminathan, B., & Hunter, S. B. (1999). Subtyping Listeria monocytogenes. In E. Ryser & E. Marth (Eds.), Listeria, listeriosis, and food safety (p. 279). New York: Marcel Dekker.Google Scholar
  49. Graves, L. M., Helsel, L. O., Steigerwalt, A. G., Morey, R. E., Daneshvar, M. I., Roof, S. E., Orsi, R. H., Fortes, E. D., Milillo, S. R., Den Bakker, H. C., Wiedmann, M., Swaminathan, B., & Sauders, B. D. (2010). Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. International Journal of Systematic and Evolutinary Microbiology, 60, 1280–1288.Google Scholar
  50. Gray, M. L., & Killinger, A. H. (1966). Listeria monocytogenes and listeric infections. Bacteriological. Reviews, 30, 309–382.Google Scholar
  51. Gray, M. L., Stafseth, H. J., Thorp, F. Jr., Sholl, L. B., & Riley, W. F. Jr. (1948). A new technique for isolating Listeria from the bovine brain. Journal of Bacteriology, 55, 471476.Google Scholar
  52. Greenwood, M., Willis, C., Doswell, P., Allen, G., & Pathak, K. (2005). Evaluation of chromogenic media for the detection of Listeria species in food. Journal of Applied Microbiology, 99, 1340–1345.Google Scholar
  53. Grimont, F., & Grimont, P. A. (1986). Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Annales de l’Institut Pasteur Microbiologie, 137B, 165–175.Google Scholar
  54. Hamon, M. A., Ribet, D., Stavru, F., & Cossart, P. (2012). Listeriolysin O: The Swiss army knife of Listeria. Trends in Microbiology, 20, 360–368.Google Scholar
  55. Harvey, J., Keenan, K. P., & Gilmour, A. (2007). Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology, 24, 380–392.Google Scholar
  56. Hoffman, A. D., & Wiedmann, M. (2001). Comparative evaluation of culture- and BAX polymerase chain reaction-based detection methods for Listeria spp. and Listeria monocytogenes in environmental and raw fish samples. Journal of Food Protection, 64, 1521–1526.Google Scholar
  57. Inglis, T. J., Clair, A., Sampson, J., O’Reilly, L., Vandenberg, S., Leighton, K., & Watson, A. (2003). Real-time application of automated ribotyping and DNA macrorestriction analysis in the setting of a listeriosis outbreak. Epidemiology and Infection, 131, 637–645.Google Scholar
  58. Jacquet, C., Gouin, E., Jeannel, D., Cossart, P., & Rocourt, J. (2002). Expression of ActA, Ami, InlB, and Listeriolysin O in Listeria monocytogenes of Human and Food Origin. Applied and Environmental Microbiology, 68, 616–622.Google Scholar
  59. Jaradat, Z. W., Schutze, G. E., & Bhunia, A. K. (2002). Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. International Journal of Food Microbiology, 76, 1–10.Google Scholar
  60. Kalekar, S., Rodrigues, J., D’Costa, D., Doijad, S., Ashok Kumar, J., Malik, S. V. S., Kalorey, D. R., Rawool, D. B., Hain, T., Chakraborty, T., & Barbuddhe, S. B. (2011). Genotypic characterization of Listeria monocytogenes isolated from humans in India. Annals of Tropical Medicine and Parasitology, 105, 351–358.Google Scholar
  61. Kalorey, D. R., Kurkure, N. V., Warke, S. R., Rawool, D. B., & Barbuddhe, S. B. (2008). Listeria species in bovine raw milk: A large survey of Central India. Food Control., 19, 109–112.Google Scholar
  62. Kämpfer, P. (1992). Differentiation of Corynebacterium spp., Listeria spp. and related organisms by using fluorogenic substrates. Journal of Clinical Microbiology, 30(5), 1067–1071.Google Scholar
  63. Kaur, S., Malik, S. V. S., Vaidya, V. M., & Barbuddhe, S. B. (2007). Listeria monocytogenes in spontaneous abortions in humans and its detection by multiplex PCR. Journal of Applied Microbiology, 103, 1889–1896.Google Scholar
  64. Kerouanton, A., Roche, S. M., Marault, M., Velge, P., Pourcher, A. M., Brisabois, A., Federighi, M., & Garrec, N. (2010). Characterization of isolates of Listeria monocytogenes from sludge using pulsed-field gel electrophoresis and virulence assays. Journal of Applied Microbiology, 108, 1380–1388.Google Scholar
  65. Kousta, M., Mataragas, M., Skandamis, P., & Drosinos, E. H. (2010). Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control, 21, 805–815.Google Scholar
  66. Lachica, R. V. (1990). Selective plating medium for quantitative recovery of food-borne Listeria monocytogenes. Applied and Environmental Microbiology, 56, 167–169.Google Scholar
  67. Lang, H. E., Neuhaus, K., & Scherer, S. (2013). Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. International Journal of Systematic and Evolutionary Microbiology, 63, 641–647.Google Scholar
  68. Leclercq, A., Clermont, D., Bizet, C., Grimont, P. A., Le Flèche-Matéos, A., Roche, S. M., Buchrieser, C., Cadet-Daniel, V., Le Monnier, A., Lecuit, M., & Allerberger, F. (2010). Listeria rocourtiae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 60, 2210–2214.Google Scholar
  69. Linnan, M. J., Nascola, L., Lou, X. D., Goulet, V., May, S., Salminen, C., Hird, D. W., Yonekura, M. L., Hayes, P., Weaver, R., Audurier, A., Plikaytis, B. D., Fannin, S. L., Kleks, A., & Broome, C. V. (1988). Epidemic listeriosis associated with Mexican style cheese. The New England Journal of Medicine, 319, 823–828.Google Scholar
  70. Liu, D. (2006). Identification, subtyping and virulence determination of an important foodborne pathogen. Journal of Medical Microbiology, 55, 645–659.Google Scholar
  71. Liu, S., Graham, J. E., Bigelow, L., Morse, P. D., & Wilkinson, B. J. (2002). Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Applied and Environmental Microbiology, 68, 1697–1700.Google Scholar
  72. Liu, D., Ainsworth, A. J., Austin, F. W., & Lawrence, M. L. (2003). Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. Journal of Medical Microbiology, 52, 1065–1070.Google Scholar
  73. Liu, D., Lawrence, M., Gorski, L., Mandrell, R. E., Austin, F. W., & Ainsworth, A. J. (2006). Listeria monocytogenes serotype 4b strains belonging to lineages I and III possess distinct molecular features. Journal of Clinical Microbiology, 44, 204–207.Google Scholar
  74. Lovett, J., Francis, D. W., & Hunt, J. M. (1987). Listeria monocytogenes in raw milk: Detection, incidence and pathogenicity. Journal of Food Protection, 50, 185192.Google Scholar
  75. Low, J. C., & Donachie, W. (1997). A review of Listeria monocytogenes and listeriosis. The Veterinary Journal, 153, 9–29.Google Scholar
  76. Lukinmaa, S., Miettinen, M., Nakari, U. M., Korkeala, H., & Siitonen, A. (2003). Listeria monocytogenes isolates from invasive infections: Variation of sero- and genotypes during an 11-year period in Finland. Journal of Clinical Microbiology, 41, 1694–1700.Google Scholar
  77. Lundén, J. M., Autio, T. J., Sjöberg, A. M., & Korkeala, H. J. (2003). Persistent and nonpersistent Listeria monocytogenes contamination in meat and poultry processing plants. Journal of Food Protection, 66, 2062–2069.Google Scholar
  78. Lunge, V. R., Miller, B. J., Livak, K. J., & Batt, C. A. (2002). Factors affecting the performance of 5’ nuclease PCR assays for Listeria monocytogenes detection. Journal of Microbiological Methods, 51(3), 361–368.Google Scholar
  79. Lyytikäinen, O., Autio, T., Maijala, R., Ruutu, P., Honkanen-Buzalski, T., Miettinen, M., Hatakka, M., Mikkola, J., Anttila, V. J., Johansson, T., Rantala, L., Aalto, T., Korkeala, H., & Siitonen, A. (2000). An outbreak of Listeria monocytogenes serotype 3a infections from butter in Finland. Journal of Infectious Diseases, 181, 1838–1841.Google Scholar
  80. Mainou-Fowler, T., MacGowan, A. P., & Postehwaite, R. (1988). Virulence of Listeria spp. Course of infection in resistant and susceptible mice. Journal of Medical Microbiology, 27, 131–140.Google Scholar
  81. Malik, S. V. S., Barbuddhe, S. B., & Chaudhari, S. P. (2002). Listeric infections in humans and animals in Indian subcontinent: A review. Tropical Animal Health and Production, 34, 359–381.Google Scholar
  82. Mammina, C., Aleo, A., Romani, C., Pellissier, N., Nicoletti, P., Pecile, P., Nastasi, A., & Pontello, M. M. (2009). Characterization of Listeria monocytogenes isolates from human listeriosis cases in Italy. Journal Clinical Microbiology, 47, 2925–2930.Google Scholar
  83. McClain, D., & Lee, W. H. (1988). Development of USDA-FSIS method for isolation of Listeria monocytogenes from raw meat and poultry. Journal of the Association of Official Analytical Chemists, 71, 660–664.Google Scholar
  84. McLauchlin, J. (1987). Listeria monocytogenes, recent advances in the taxonomy and epidemiology of listeriosis in humans. Journal of Applied Bacteriology, 63, 1–11.Google Scholar
  85. McLauchlin, J. (1997). The identification of Listeria species. International Journal of Food Microbiology, 38, 77–81.Google Scholar
  86. McLauchlin, J., Audurier, A., Frommelt, A., Gerner-Smidt, P., Jacquet, C., Loessner, M. J., van-der Mee-Marquet, N., Rocourt, J., Shah, S., & Wilhelms, D. (1996). WHO study on subtyping Listeria monocytogenes: Results of phage-typing. International Journal of Food Microbiology, 32, 289–299.Google Scholar
  87. McLauchlin, J., Mitchell, R. T., Smerdon, W. J., & Jewell, K. (2004). Listeria monocytogenes and listeriosis: A review of hazard characterisation for use in microbiological risk assessment of foods. International Journal of Food Microbiology, 92, 15–33.Google Scholar
  88. Menudier, A., Bosiraud, C., & Nicolas, J. A. (1991). Virulence of Listeria monocytogenes serovars and Listeria s. in experimental infection in mice. Journal of Food Protection, 54, 917921.Google Scholar
  89. Murray, E. G. D., Webb, R. A., & Swann, M. B. R. (1926). A disease of rabbits characterised by a large mononuclear leucocytosis caused by a hitherto underscribed bacillus Bacterium monocytogenes (N.Sp.). Journal of Pathology and Bacteriology, 29, 407–409.Google Scholar
  90. Nadon, C. A., Woodward, D. L., Young, C., Rodgers, F. G., & Wiedmann, M. (2001). Correlations between molecular subtyping and serotyping of Listeria monocytogenes. Journal of Clinical Microbiology, 39, 2704–2707.Google Scholar
  91. Neves, E., Silva, A. C., Roche, S. M., Velge, P., & Brito, L. (2008). Virulence of Listeria monocytogenes isolated from the cheese dairy environment, other foods and clinical cases. Journal of Medical Microbiology, 57, 411–415.Google Scholar
  92. Newell, D. G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scheutz, F., van der Giessen, J., & Kruse, H. (2011). Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 145, 493.Google Scholar
  93. Norton, D. M., Scarlett, J. M., Horton, K., Sue, D., Thimothe, J., Boor, K. J., & Wiedmann, M. (2001). Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Applied and Environmental Microbiology, 67, 646–653.Google Scholar
  94. Notermans, S. H. W., Dufrenne, J., LeimeisterWachter, M., Domann, E., & Chakraborty, T. (1991a). Phosphatidylinositol-specific phospholipase C activity as a marker to distinguish between pathogenic and non pathogenic Listeria species. Applied Environmental Microbiology, 57, 26662670.Google Scholar
  95. Notermans, S., Dufrenne, J., Chakraborty, T., Steinmeyer, S., & Terplant, G. (1991b). The chick embryo test agrees with the mouse bioassay for assessment of the pathogenicity of Listeria species. Letters in Applied Microbiology, 13, 161164.Google Scholar
  96. Nyfeldt, A. (1929). Etiologie de la mononucleose infectieuse. Compt Rend Soc Biol, 101, 590–591.Google Scholar
  97. Olesen, I., Vogensen, F. V., & Jespersen, L. (2009). Gene tanscription and virulence potential of Listeria monocytogenes strains after exposure to acidic and NaCl stress. Foodborne Pathogens and Disease, 6, 669–680.Google Scholar
  98. Oliver, S. P., Jayarao, B. M., & Almeida, R. A. (2005). Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease, 2, 115–129.Google Scholar
  99. Orsi, R. H., den Bakker, H. C., Wiedmann, M. (2011). Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 301, 79–96.Google Scholar
  100. Ottaviani, F., Ottaviani, M., & Agosti, M. (1997). Esperienza su um agar selettivo e differentiale per Listeria monocytogenes. Industrie Alimentari, 36, 1–3.Google Scholar
  101. Palumbo, J. D., Borucki, M. K., Mandrell, R. E., & Gorski, L. (2003). Serotyping of Listeria monocytogenes by enzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. Journal of Clinical Microbiology, 41, 564–571.Google Scholar
  102. Pan, Y., Breidt, F. Jr., & Kathariou, S. (2006). Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food-processing environment. Applied and Environmental Microbiology, 72, 7711–7717.Google Scholar
  103. Paziak-Domańska, B., Bogusławska, E., Wieckowska-Szakiel, M., Kotłowski, R., Rózalska, B., Chmiela, M., Kur, J., Dabrowski, W., & Rudnicka, W. (1999). Evaluation of the API test, phosphatidylinositol-specific phospholipase C activity and PCR method in identification of Listeria monocytogenes in meat foods. FEMS Microbiology Letters, 171, 209–214.Google Scholar
  104. Portnoy, D. A., Chakraborty, T., Goebel, W., & Cassart, P. (1992). Molecular determinants of Listeria monocytogenes pathogenesis. Infection and Immunity, 60, 12631267.Google Scholar
  105. Rawool, D. B., Malik, S. V., Shakuntala, I., Sahare, A. M., & Barbuddhe, S. B. (2007). Detection of multiple virulence associated genes in Listeria monocytogenes from bovine mastitis cases. International Journal of Food Microbiology, 113, 201–207.Google Scholar
  106. Rebagliati, V., Philippi, R., Rossi, M., & Troncoso, A. (2009). Prevention of foodborne listeriosis. Indian Journal of Pathology & Microbiology, 52(2), 145–149.Google Scholar
  107. Roche, S. M., Velge, P., Bottreau, E., Durier, C., Marquet-van-der Mee, N., Pardon, P. (2001). Assessment of the virulence of Listeria monocytogenes: Agreement between a plaque-forming assay with HT-29 cells and infection of immunocompetent mice. International Journal of Food Microbiology, 68, 33–44.Google Scholar
  108. Roche, S. M., Gracieux, P., Albert. I., Gouali, M., Jacquet, C., Martin, P. M., & Velge, P. (2003). Experimental validation of low virulence in field strains of Listeria monocytogenes. Infection and Immunity, 71, 3429–3436.Google Scholar
  109. Rocourt, J., & Catimel, B. (1985). Biochemical characterization of species in the genus Listeria. Zentralblatt für Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology, 260(2), 221–231.Google Scholar
  110. Rodas-Suárez, O. R., Flores-Pedroche, J. F., Betancourt-Rule, J. M., Quiñones-Ramírez, E. I., & Vázquez-Salinas, C. (2006). Occurrence and Antibiotic Sensitivity of Listeria monocytogenes Strains Isolated from Oysters, Fish, and Estuarine Water. Applied and Environmental Microbiology, 72, 7410–7412.Google Scholar
  111. Rodríguez-Lázaro, D., Fernández, M., & Pla, M. (2004). Simultaneous quantitative detection of Listeria spp. and Listeria monocytogenes using a duplex real-time PCR-based assay. FEMS Microbiology Letters, 233, 257–267.Google Scholar
  112. Rossi, M. L., Paiva, A., Tornese, M., Chianelli, S., & Troncoso, A. (2008). Listeria monocytogenes outbreaks: A review of the routes that favor bacterial presence. Revista. Chilena de Infectologia, 25, 328–335.Google Scholar
  113. Sauders, B. D., & Wiedmann, M. (2007). Ecology of Listeria species and L. monocytogenes in the natural environment. In E. T. Ryser & E. H. Marth (Eds.), Listeria, listeriosis, and food safety (pp. 21e53). New York: Marcel Dekker.Google Scholar
  114. Schlech, W. F. 3rd, Lavigne, P. M., Bortolussi, R. A., Allen, A. C., Haldane, E. V., Wort, A. J., Hightower, A. W., Johnson, S. E., King, S. H., Nicholls, E. S., Broome, C. V. (1983). Epidemic listeriosis-evidence for transmission by food. The New England Journal of Medicine, 308, 203–206.Google Scholar
  115. Schonberg, A. (1989). Method to determine virulence of Listeria strains. International Journal of Food Microbiology, 8, 281284.Google Scholar
  116. Schuchat, A., Swaminathan, B., & Broome, C. V. (1991). Epidemiology of human listeriosis. Clinical Microbiology Reviews, 4, 169–183.Google Scholar
  117. Seeliger, H. P. R., & Höhne, K. (1979). Serotyping of Listeria monocytogenes and related species. Methods in Microbiology, 13, 31–49.Google Scholar
  118. Seeliger, H. P. R., & Jones, D. (1986). Genus Listeria Pirie, 1940, 383AL. In: P. M. A. Sneath, N. S. Nair, M. E. Sharpe & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (Vol. 2, pp. 1235–1245). Baltimore: The Williams and Wilkins Co.Google Scholar
  119. Shakuntala, I., Malik, S. V. S., Barbuddhe, S. B., & Rawool, D. B. (2006). Isolation of Listeria monocytogenes from buffaloes with reproductive disorders and its confirmation by polymerase chain reaction. Veterinary Microbiology, 117, 229–234.Google Scholar
  120. Skalka, B., Smola, J., & Elischerova, K. (1982). Routine test for in vitro differentiation of pathogenic and apathogenic Listeria monocytogenes strains. Journal of Clinical Microbiology, 15, 503507.Google Scholar
  121. Smith, J. L., & Buchanan, R. L. (1990). Identification of supplements that enhance the recovery of Listeria monocytogenes on modified Vogel-Johnson agar. Journal of Food Safety, 10, 155–163.Google Scholar
  122. Stelma, G. N., Reyes, A. L., Peeler, J. T., Francis, D. W., Hunt, J. M., Spaulding, P. L., Johnson, C. H., & Lovett, J. (1987). Pathogenicity test for testing Listeria monocytogenes using immunocompromised mice. Journal of Clinical Microbiology, 25, 2085–2089.Google Scholar
  123. Struelens, M. J., & the Members of the European Study Group on Epidemiological Markers (ESGEM), of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). (1996). Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clinical Microbiology and Infection, 2, 2–11.Google Scholar
  124. Swaminathan, B., & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9, 1236–1243.Google Scholar
  125. Terplan, G., & Steinmeyer, S. (1989). Investigations on the pathogenicity of Listeria spp. by experimental infection of the chick embryo. International Journal of Food Microbiology, 8, 277280.Google Scholar
  126. Thimothe, J., Nightingale, K. K., Gall, K., Scott, V. N., & Wiedmann, M. (2004). Tracking of Listeria monocytogenes in smoked fish processing plants. Journal of Food Protection, 67, 328–341.Google Scholar
  127. Todd, E. C. D., & Notermans, S. (2011). Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control, 22, 1484–1490.Google Scholar
  128. Topley, W. W. C., & Wilson, G. S. (1990). Principles of bacteriology, virology and immunity. In M. T. Parker & B. I. Duerden (Eds.), Systemic bacteriology (pp. 63–71). London: Edward Amold.Google Scholar
  129. Van Kessel, J. S., Karns, J. S., Gorski, L., McCluskey, B. J., & Perdue, M. L. (2004). Prevalence of Salmonellae, Listeria monocytogenes, and fecal coliforms in bulk tank milk on US dairies. Journal of Dairy Science, 87, 2822–2830.Google Scholar
  130. Van Netten, P., Perales, I., Curtis, G. D. W., & Mossel, D. A. A. (1989). Liquid and solid selective differential media for the detection and enumeration of Listeria monocytogenes and other Listeria spp. International Journal of Food Microbiology, 8, 224316.Google Scholar
  131. Vázquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Domínguez-Bernal, G., Goebel, W., González-Zorn, B., Wehland, J., & Kreft, J. (2001). Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Reviews, 14, 584–640.Google Scholar
  132. Vlaemynck, G., Lafarge, V., & Scotter, S. (2000). Improvement of the detection of Listeria monocytogenes by the application of ALOA, a diagnostic, chromogenic isolation medium. Journal of Applied Microbiology, 88, 430–441.Google Scholar
  133. Warriner, K., & Namvar, A. (2009). What is the hysteria with Listeria? Trends in Food Science and Technology, 20, 245–254.Google Scholar
  134. Wiedmann, M. (2002). Molecular subtyping methods for Listeria monocytogenes. Journal of AOAC International, 85(2), 524–531.Google Scholar
  135. Wiedmann, M., Bruce, J. L., Knorr, R., Bodis, M., Cole, E. M., McDowell, C. I., McDonough, P. L., & Batt, C. A. (1996). Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants. Journal of Clinical Microbiology, 34, 1086–1090.Google Scholar
  136. Wielinga, P. R., & Schlundt, J. (2012). Food safety: At the center of a one health approach for combating zoonoses. In P. R. Wielinga & J. Schlundt (Eds.), Current topics in microbiology and immunology (pp. 3–17). Berlin: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Government College of Arts, Science & CommerceMarcelaIndia

Personalised recommendations