Advertisement

Role of Microbes in Vermicomposting: A Review

Chapter

Abstract

Recycling organic wastes through vermiculture biotechnology (VBT) is being considered an economically viable solution. Earthworms are regarded as natural bioreactors which proliferate along with other microorganisms and provide required conditions for the biodegradation of wastes. This review examines the various dynamics of the earthworm–microbe relationship with emphasis on VBT. Further, it evaluates the earthworm biodiversity and gut morphology and highlights the assessment of microbes associated with skin and gut of earthworms, vermicasts and vermicompost along with microbial enzyme activities.

In the present study, vermicomposting of press mud from a sugar factory using Megascolex megascolex and Eudrilus eugenae depicted that vermicomposting involves biooxidation and stabilization of organic material through the interactions between earthworms and microorganisms.

Keywords

Vermicomposting Biodegradation Microbial enzymes Vermiwash Soil fertility 

References

  1. Aira, M., Monroy, F., Domínguez, J., & Mato, S. (2002). How earthworm density affects microbial biomass and activity in pig manure. European Journal of Soil Biology, 38, 7–10.CrossRefGoogle Scholar
  2. Aira, M., Monroy, F., & Domínguez, J. (2003). Effects of two species of earthworms (Allolobophora sp.) on soil systems: a micro faunal and biochemical analysis. Pedobiologia, 47, 877–881.Google Scholar
  3. Aira, M., Monroy, F., & Domínguez, J. (2006). Changes in microbial biomass and microbial activity of pig slurry after the transit through the gut of the earthworm Eudrilus eugeniae. Soil Biology and Biochemistry, 42, 371–376.Google Scholar
  4. Bano, K., Kale, R. D., & Vijayalakshmi, D. (1987). Production and reproduction trend in a tropical earthworm Eudrilus eugeniae. In S. Palanichamy (Ed.), Proceedings of 5th Indian symposium of invertebrate reproduction (pp. 210–218). Palani: Palani Paramount Publications.Google Scholar
  5. Bhattacharya, K. K., Mukhopadhyay, N., Mukharjee, D., & Das, S. K. (2000). Comparative efficiency of improved compost techniques. In B. B. Jana, R. D. Banerjee, B. Guterstam, & J. Heeb (Eds.), Proceedings of international conference. Waste recycling and resource management in developing world (pp. 219–224). Kolkata: Sapana Printing Works.Google Scholar
  6. Bhawalkar, V. S. (1995). Vermiculture bioconversion of organic residues. PhD thesis (pp. 15–45). India: IIT Mumbai.Google Scholar
  7. Binet, E., Fayolle, L., Prasad, M. (1998). Significance of earthworms in stimulating soilmicrobial activity. Biologyand Fertility of Soils, 27, 79–84.CrossRefGoogle Scholar
  8. Bouché, M. B. (1972). Lombricienns de France. Ecologie et Systématique (pp. 72–74). Paris: INRA Publication, Institut National des Recherches Agriculturales.Google Scholar
  9. Butt, K. R., Nieminen, M. V., & Siren, T. (2005). Population and behavior level responses of arable soil earthworms to board mill sludge application. Biology and Fertility of Soils, 42, 163–167.CrossRefGoogle Scholar
  10. Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A., & Parkhurst, D. F. (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359–2365.CrossRefGoogle Scholar
  11. Choudhary, P. S., Narendra, K., & Tyagi, A. K. (2001). Suitability of rubber leaf litter as a substrate for epigeic earthworms, Perionyx exavatus, Eudrilus eigeniae and Eisenia fetida. In Proceedings of VIIth national symposium of soil biology and ecology (pp. 26–29). Bangalore: GKVK Agriculture University.Google Scholar
  12. Dash, M. C., & Senapati, B. K. (1985). Potentiality of Indian earthworms for vermicomposting and Vermifeed. Proceedings of national seminar on current trends in soil biology (pp. 61–69). Hissar: Haryana Agriculture University.Google Scholar
  13. Dash, M. C., & Senapati, B. K. (1986). Vermitechnology, an option for organic waste management. In M. C. Dash, B. K. Senapati, & P. C. Mishra (Eds.), Proceedings of national seminar on organic waste utilization and vermicomposting part-B: verms and vermicompostingpp (pp. 157–172). Sambalpur: Sambalpur University.Google Scholar
  14. Dash, M. C., Nanda, B., & Behera, N. (1980a) Fungal feeding by Enchytraeidae (Oligochaeta) in a tropical woodland in Orissa, India. Oikos, 34, 202–205.CrossRefGoogle Scholar
  15. Dash, M. C., Nanda, B., & Mishra, P. C. (1980b) Digestive enzymes of some earthworms. Cellular and Molecular Life Sciences, 36, 1156–1157.CrossRefGoogle Scholar
  16. Dash, M. C., Nanda, B., & Mishra, P. C. (1981). Digestive enzymes in three species of Enchytraeidae (Oligochaeta). Okios, 36, 316–318.CrossRefGoogle Scholar
  17. Dick, R. P. (1992). A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems and Environment, 40, 25–36.CrossRefGoogle Scholar
  18. Divya, U. K. (2001). Relevance of vermiculture in sustainable agriculture. Agriculture GeneralWorld, July, 9–11.Google Scholar
  19. Domínguez, J. (2004). State of the art and new perspectives on vermicomposting research. In C. A. Edwards (Ed.), Earthworm ecology (2nd Ed., pp. 401–424). Boca Raton: CRC Press LLC.CrossRefGoogle Scholar
  20. Domínguez, J., & Edwards, C. A. (2004). Vermicomposting organic wastes: A review. In S. H. S. Hanna, & W. Z. A. Mikhail (Eds.), Soil zoology for sustainable development in the 21st century Cairo, pp. 369–395.Google Scholar
  21. Easton, E. G. (1980). Japanese earthworms: A synopsis of the Megadrile species (Oligochaeta). Bulletin of the British Museum (Natural History) Zoology, 40, 33–65.Google Scholar
  22. Edwards, C. A. (2004). Earthworm ecology (2nd Ed., pp. 12–23). Boca Raton: CRC Press LLC.CrossRefGoogle Scholar
  23. Edwards, C. A., & Lofty, J. R. (1977). Biology of earthworms (pp. 129–147). London: Chapman and Hall.CrossRefGoogle Scholar
  24. El-Adlouni, C., Mukhopadhyay, M. J., Walsh, P., Poirier, G. G., & Nadeau, D. (1995). Isolation of genomic DNA from the earthworm species Eisenia fetida. Molecular and Cellular Biochemistry, 142, 19–23.CrossRefGoogle Scholar
  25. Erseus, C., Prestegard, T., & Kallersjo, M. (2000). Phylogenetic analysis of Tubificidae (Annelida: Clitella) based on 18S RDNA sequence. Molecular Phylogenetics and Evolution, 15, 381–389.CrossRefGoogle Scholar
  26. Fischer, K., Hahn, D., Amann, R. I., Daniel, O., & Zeyer, J. (1995). In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Canadian Journal of Microbiology, 41, 666–673.CrossRefGoogle Scholar
  27. Fragoso, B. I., Gonzales, C., Arteaga, C., & Patron, J. C. (1993). Relationship between earthworms and soil organic matter levels in natural and managed ecosystems in the Mexico tropics. In K. Mulongoy & R. Mecchx (Eds.), Soil organic matter dynamics and sustainability of tropical agriculture (pp 231–239). Chichester: John Wiley.Google Scholar
  28. Gajalakshmi, S., & Abbasi, S. A. (2004). Earthworms and vermicomposting. Indian Journal of Biotechnology, 3, 486–494.Google Scholar
  29. Garg, V. K., Suthar, S., Yadav, A., Singh, D., & Suthar, S. (2012). Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresource Technology, 112, 179–185.CrossRefGoogle Scholar
  30. Gautam, B., & Chaudhuri, P. S. (2002). Cocoon production, morphology, hatching pattern and fecundity in seven tropical earthworm species—a laboratory-based investigation. Journal of Bioscience, 27, 283–294.CrossRefGoogle Scholar
  31. Ghilarov, M. S. (1963). On the Interrelations between soil dwelling invertebrates and soil microorganisms. In J. Doekson & J. Van der Drift (Eds.), Soil organisms (pp. 255–259). Amsterdam: North Holland Publishing Co.Google Scholar
  32. Giraddi, R. S., Meenatchi, R., Suresh, B., Biradar, M. D., & Biradar, D. P. (2009). Standardisation of method for genomic DNA extraction in earthworms. Karnataka Journal of Agricultural Science, 22, 918–920.Google Scholar
  33. Gorakh Nath Singh K., & Singh D. K. (2009). Chemical analysis of vermicomposts/vermiwash of different combinations of animal, aground kitchen waste. Australian Journal of Basic and Applied Sciences, 3, 3672–3676.Google Scholar
  34. Goswami, L., Sarkar, S., Mukherjee, S., Das, S., Barman, S., Raul, P., Bhattacharyya, P., Mandal, N. C., Bhattacharya, S., & Bhattacharya, S. S. (2014). Vermicomposting of Tea Factory Coal Ash: Metal accumulation and metallothionein response in Eisenia fetida (Savigny) andLampito mauritii (Kinberg). Bioresource Technology, 166, 96–102.CrossRefGoogle Scholar
  35. Greg-Smith, P. W., Beckert, H., Edwards, P. J., & Heimbach, F. (1992). Ecotoxicology of earthworms (p. 269). New Castle Upon Tyne: Athenaecum Press Ltd.Google Scholar
  36. Gunthilingaraj, K., & Ravignanam, T. (1996). Vermicomposting of sericultural wastes. Madras Agricultural Journal, 83, 455–457.Google Scholar
  37. Hait, S., & Tare, V. (2011). Vermistabilization of primary sewage sludge. Bioresource Technology, 102, 2812–2820.CrossRefGoogle Scholar
  38. Hammond, R. L., Saccheri, I. J., & Coifi, C. (1998). Isolation of microsstellite makers in animals in animals. In A. Karp, P. G. Issac, & D. S. Ingram (Eds.), Molecular tools for screening biodiversity: Plants and animals (pp. 195–201). London: Chapman and Hall.Google Scholar
  39. Hanc, A., & Chadimova, Z., (2014). Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresource Technology, In Press, Corrected Proof, Available online 17 Feb 2014. DOI:10.1016/j.biortech.2014.02.031.Google Scholar
  40. Hartenstein, R., Neuhauser, E. F., & Kaplan, D. L. (1979). A progress report on the potential use of earthworm in sludge management. In Proceedings of the national sludge conference, Florida (pp. 238–241). Silver Spring: Information Transfer Inc.Google Scholar
  41. Horn, M. A., Schramma, A., Draka, H. (2003). The earthworm gut: An ideal habitat for ingested N2O-producing microorganisms. Applied and Environmental Microbiology, 69, 1662–1669.CrossRefGoogle Scholar
  42. Ismail, S. A. (Ed.). (1997). Vermitech: Worm powered technology (p. 40). New Delhi: Council for Advancement of People’s Action and Rural Technology.Google Scholar
  43. Jamieson, B. G. M. (1981). Historical biogeography of Australian Oligochaeta. In A. Keast (Ed), Ecological Biogeography of Australia (vol. 2, pp. 886–921).Google Scholar
  44. Jayashankar, S. (1994). Studies of vermicomposting as a method of sewage sludge disposal. MSc thesis (pp. 1–30). Madras: Anna University.Google Scholar
  45. Jeevan Rao, K., & Ramalakshmi, S. (2002). Vermiculture technology for effective urban waste management. In Proceedings of a national seminar on solid waste management (pp. 317–324). Bangalore, India.Google Scholar
  46. Julka, J. M. (1993). Earthworm resources in India and their utilization in vermiculture. In A. K. Ghosh (Ed.), Earthworm resources and vermiculture (pp. 51–56). Kolkata: Zoological Survey of India.Google Scholar
  47. Julka, J. M., & Senapati, B. K. (1993). Selection of suitable species under Indian conditions. In A. K. Ghosh (Ed.), Earthworm resources and vermiculture (pp. 113–115). Kolkata: Zoological Survey of India.Google Scholar
  48. Kale, R. D. (1994). Vermicomposting of waste materials. Earthworm cinderella of organic farming (p. 47). New Delhi: Prism Book Pvt Ltd.Google Scholar
  49. Kale, R. D., Bano, K., Vinyak, & Bhagyaraj, D. J. (1986). Suitability of neem cake as an additive in earthworm feed and its influence in the establishment of micro flora. Journal of Soil Biology and Ecology, 6, 98–103.Google Scholar
  50. Kale, R. D., Mallesh, B. C., Kubra Bano, & Bhagyaraj, D. J. (1992). Influence of vermicompost application on available micronutrients and selected microbial populations in paddy field. Soil Biology and Biochemistry, 24, 1317–1320.CrossRefGoogle Scholar
  51. Kallimani, C. S. (1998). Bioconversion of sericulture waste using Eudrilus eugeniae and Phanerochaete crysosporium. MSc thesis (pp. 1–10). Dharwad: University of Agricultural Science.Google Scholar
  52. Kavian, M. F., & Ghatnekar, S. D. (1996). Biomanagement of dairy effluent using cultures of red earthworms (L. rubellus). Industrial Journal of Environmental Protection, 11, 680–682.Google Scholar
  53. Lavelle, P., & Spain, A. V. (2001). Soil ecology (p. 654). Dordrecht: Kluwer AcademicCrossRefGoogle Scholar
  54. Lee, K. E. (1959). The earthworm fauna of New Zealand. New Zealand Department of Scientific and Industrial Research, Wellington, Bulletin 130 (pp. 486).Google Scholar
  55. Loquet, M., Batnagar, J., Bouch, M. B., & Ruvelle, J. (1977). Estimation of ecological influence by earthworms on microorganisms. Pedobiologia, 17, 400–417.Google Scholar
  56. Manna, M. C., Jha, S., Ghosh, P. K., & Acharya, C. L. (2003). Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresource Technology, 88, 197–206.CrossRefGoogle Scholar
  57. Meena, K., & Renu, B. (2009). Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresource Technology, 100, 5846–5852.CrossRefGoogle Scholar
  58. Meglitsch, P. A., & Schram, F. R. (1991). Invertebrate Zoology (3rd Ed., pp. 336–337), New Delhi: Oxford University Press.Google Scholar
  59. Meyer, W. J., & Bouwman, H. (1997). Anisopary in compost earthworm reproductive strategies. Biology and Fertility of Soils, 20, 53–56.CrossRefGoogle Scholar
  60. Mishra, P. C., & Dash, M. C. (1980). Digestive enzymes of some earthworms. Experientia, 36, 1156–1157.CrossRefGoogle Scholar
  61. Mishra, R. K., Singh, B. K., Upadhyay, R. K., & Singh, S. (2009). Technology for vermicompost production. Indian Farming, 14–15.Google Scholar
  62. Mitchell, M. J., & Horner, S. C. (1980). Decomposition process in sewage sludge and sludge amended soils in soil biology as related to land use practices. In D. L. Dindal (Ed), Proceedings of 7th international colloquim soil zoology, New York. (pp. 129-138). Washington: Office of Pesticides and Toxic Substances, EPA.Google Scholar
  63. Monson, C. C., Damodharan, G., Kumar, S. & Kanakasbai, V. (2007). Composing of kitchen waste using in vessel and vermibeds. Proceedings of international conference on cleaner tech and environmental management, 4–6th January 2007 (pp. 678–682). Pondichery: Pondichery Engineering College.Google Scholar
  64. Moody, S. A., Briones, M. J. I., Pierce, T. G., & Dighton, J. (1995). Selective consumption of decomposing wheat straw by earthworms. Soil Biology and Biochemistry, 28, 533–537.CrossRefGoogle Scholar
  65. Morgan, A. J., Sturzenbaum, S. R., & Kille, P. A. (1999). Sort Overview of molecular biomarkers strategies with particular regard to recent development in earthworms. Pedobiologia, 43, 574–584.Google Scholar
  66. Munnoli, P. M. (1998). A study on management of organic solid waste of agro based industries through vermiculture biotechnology. ME thesis (pp. 11–30), India: TIET Patiala.Google Scholar
  67. Munnoli, P. M. (2007). Management of industrial organic solid wastes through vermiculture biotechnology with special reference to microorganisms. PhD thesis (pp. 1–334). India: Goa University.Google Scholar
  68. Munnoli, P. M., & Bhosle, S. (2008). Soil aggregation by vermicompost of press mud. Current Science, 95, 1533–1535.Google Scholar
  69. Munnoli, P. M., & Bhosle, S. (2009). Effect of soil cow dung proportion of vermicomposting. Journal of Scientific and Industrial Research, 68, 57–60.Google Scholar
  70. Munnoli, P. M., & Bhosle, S. (2011). Water-holding capacity of earthworms’ vermicompost made of sugar industry waste (press mud) in mono and poly culture vermireactors. The Environmentalist, 394–400.Google Scholar
  71. Munnoli, P. M., & Bhosle, S. (2013). Solid waste management in sugar industry: A case study of Sanjeevani Co-operative sugar Factory Dayanan Nagar Goa India. Proceedings of international conference on solid waste technology organised by Wiener University, Philadelphia, USA, March 2013 (pp. 350–358).Google Scholar
  72. Munnoli P. M., & Bhosle S. (2014). Role of bacterial inoculums. Proceedings of international conference on solid waste technology organised by Wiener University, Philadelphia, USA, March 2014 (pp. 1339–1360).Google Scholar
  73. Munnoli, P. M., Arora, J. K., & Sharma, S. K. (2000). Organic waste management through vermiculture: A case study of pepsi foods channoo Punjab. In B. B. Jana, R. D. Banarjee, B. Guterstam, & J. Heeb (Eds.), Waste resource recycling in the developing world (pp. 203–208). Kolkatta: Sapana Printing Works.Google Scholar
  74. Munnoli, P. M., Arora, J. K., & Sharma, S. K. (2002). Impact of vermi processing on soil characteristics. Journal of Industrial Pollution Control, 18, 87–92.Google Scholar
  75. Munnoli, P. M., Teixeira da Silva, J. A., & Bhosle, S. (2010). Geotechnical properties of vermicomposts of press mud using Eisenia fetida, Eudrilus eugeniae and Megascolex megascolex. Dynamic soil and Dynamic Plant. Special Issue 1. pp. 145–150.Google Scholar
  76. Murray, M. G., & Thomson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acid Research, 8, 4321–4325.CrossRefGoogle Scholar
  77. Nair, A. G., Muftah, A., Martia, J. I., & Abdegader, K. (2005). Earthworm resources of Benghazi Libya. Journal of Environmental Biology, 26, 175–178.Google Scholar
  78. Narayan, J. (2000). Vermicomposting of Biodegradable wastes collected from Kuvempu University campus using local and exotic species of earthworm. In: Proceedings of a national conference on industry and environment, 28th to 30th December 1999, Karad, India (pp. 417–419).Google Scholar
  79. Nechitaylo, T. Y., Yakimov, M. M., Gudinho, M., Timmis, K. N., Belogolova, E., Byzov, B. A., Kurakov, A. V., Jones, D. L., & Golyshin, P. N. (2010). Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil. Microbial Ecology, 59(3), 574–587.CrossRefGoogle Scholar
  80. Pagaria, P., & Totwat, K. L. (2007). Effects of press mud and spent wash in integration with s with phosphogypsum on metallic cation build up in the calcareous sodic soils. Journal of the Indian Society of Soil Science, 55, 52–57.Google Scholar
  81. Parthasarathi, K. (2006). Aging of press mud vermicast of Lampito mauritti (Kinberg) and Eudrilus eugeniae (Kinberg)—Reduction in microbial population and activity. Journal of Environmental Biology, 27, 221–223.Google Scholar
  82. Parthasarathi, K., & Ranganathan, L. (2001). Aging effect of microbial populations, enzyme activities and N P K contents in the soil in the soil worm casts of Lampito mauriti (Kinberg) and Eudrilus eugeniae (Kinberg). Pollution Research, 20, 53–57.Google Scholar
  83. Piccone, G., Biosoil, B., Deluca, G., & Minelli, L. (1986). Vermicomposting of different organic wastes. In Compost Production and Use Symposium, 17–19 April 1986, Udine, Italy (pp. 818–821).Google Scholar
  84. Plaza, C., Hernández, D., García-Gil, J. C., & Polo, A. (2004). Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry, 36, 1577–1585.CrossRefGoogle Scholar
  85. Pop, A. A., Michael, W., & Victor, V. P. (2003). Use of 18S 16SrDNA and cytochrome-c oxidase sequences in earthworm taxonomy (Oligochaeta: Lumbricidae). Pedobiologia, 47, 428–433.Google Scholar
  86. Prabha, M. L., Indira, A. J., Jayaraj, R., & Srinivas Rao, D. (2007b) Comparative studies on the digestive enzymes in the gut of earthworms, Eudrilus eugeniae and Eisenia fetida. Indian Journal of Biotechnology, 6, 567–569.Google Scholar
  87. Purakayastha, T. J., & Bhatnagar, R. K. (1997). Vermicompost a promising source of plant nutrients. Indian Farming Feb, 35–37.Google Scholar
  88. Rajesh Babu, J., Yeom, I. T., Esakkiraj, Kumar, N., Lee, Y. W., & Vallinayagam, S. (2008). Bio management of sago-sludge using an earthworm, Lampito mauritii. Journal of Environmental Biology, 29, 753–757.Google Scholar
  89. Rajiv, K. S., Agarwal, S., Chauhan, K., Chandran, V., & Soni, B. K. (2010). Vermiculture technology: Reviving the dreams of Sir Charles Darwin for scientific use of earthworms in sustainable development programs. Technology and Investment, 1, 155–172.CrossRefGoogle Scholar
  90. Ranganath Reddy, R. L., Ramakrishnan Parama, V. R., Bhargana, M. M. V., & Kale, R. D. (2002). Vermicomposting a method of urban Solid waste management. Proceedings of national seminar on solid waste management, 12–14th December 2002, Bangalore, India (pp. 98–99).Google Scholar
  91. Ranganathan, V., & Christopher. (1996). Vermicomposting. Kisan World September, March 1996 (p. 17).Google Scholar
  92. Ravichandran, C., Yeshoniketan, S., Nagarajan, G., & Shaikh Kadhan, J. (2002). Vermicomposting of municipal solid wastes in Tiruchinapalli city. Proceedings of national seminar on solid waste management, 12–14th December 2002, Bangalore, India (pp. 100–103).Google Scholar
  93. Ravikumar, T. N., Yeledhalli, N. A., Ravi, M. V, & Narayana Rao, K. (2008). Physical, physico-chemcial and enzymes activities of vermiash compost. Karnataka Journal of Agricultural Science, 21, 222–226.Google Scholar
  94. Renu, N., & Suthar, S. (2013). Vermistabilization of paper mill waste water sludge using Eisenia fetida. Bioresource Technology, 128, 193–198.CrossRefGoogle Scholar
  95. Reynolds, J. W. (1977). The earthworms (Lumbricidae and Sparganophilidae) of Ontario (pp. 1–42). Toronto: Royal Ontario Museum.Google Scholar
  96. Rodale, J. I., & Staff of Organic Gardening and Farming Magazine (1967). The Complete Book of Composting (pp. 874–923). Emmaus: Rodale Books, Inc.Google Scholar
  97. Roig, M. G., Martin Rodrigues, M. J., & Cachazal, M. (1993). Principles of biotechnology treatment of industrial wastes. Critical Reviews in Biotechnology, 13, 99–115.CrossRefGoogle Scholar
  98. Sahu, S. S., Mukharjee, D., & Panda, R. N. (2000). Improvement of soil environment by vermicompost. In B. B. Jana (Ed.), Proceedings of international conference, waste recycling and resource management in the developing world, ecological engineering approach, November 28–30 (pp. 209–212). Sapana Printing Works, Kalyani University, Kolkata, India.Google Scholar
  99. Satchell, J. E. (1955). Some aspects of earthworm ecology. In DKMcE Keven (Ed.), Soil zoology (pp. 180–201), London: Butterworth’s.Google Scholar
  100. Schönholzer, F., Hahn, D., & Zeyer, J. (1999). Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbial Ecology, 28, 235–248.CrossRefGoogle Scholar
  101. Senapati, B. K. (1993). Earthworm gut contents and its significance. In A. K. Ghosh (Ed.), Earthworm resources and vermiculture (pp. 97–99). Kolkata: Zoological Survey of India.Google Scholar
  102. Shahnaz, A. R., Shumaila, B., & Siddiqui, M. I. J. (2002). Species structure of earthworms in various crop fields of Gurjanwala District. International Journal of Agriculture and Biology, 4, 350–354.Google Scholar
  103. Shahul Hameed, P., Gokulakrishnan, K., Rajasekaran, M., Thangavel, K., & Raja, P. (2002). Vermicomposting of solid wastes from tanning Industry. Proceedings of national seminar on solid waste management, 12–14th December 2002, Bangalore, India (pp. 104–106).Google Scholar
  104. Sims, R. W., & Gerard, B. M. (1985). Earthworms. Keys and notes to the identification and study of the species. Synopsis of the British Fauna (New series). E. J. Brill, Leiden. No. 31 (p. 171).Google Scholar
  105. Singh, J. (1997a) Habitat preferences of selected Indian earthworm species and their efficiency in reduction of organic material. Soil Biology and Biochemistry, 29, 585–588.CrossRefGoogle Scholar
  106. Singh, N. B. (1997b) Development of process package for organic solid waste management through vermiculture biotechnology, in organic waste generating industries in Punjab. ME thesis (pp. 41–93), Punjab: TIET Patiala.Google Scholar
  107. Singh, D., & Suthar, S. (2013). Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresource Technology, 112, 179–185.CrossRefGoogle Scholar
  108. Singh, N. B., Khare, A. K., Bhargava, D. S., & Bhattacharya, S. (2005). Effect of initial substrate pH on Vermicomposting using Perionyx excavatus (Perrier 1872). Applied Ecology and Environmental Research, 4, 85–97.CrossRefGoogle Scholar
  109. Singleton, D. R., Hendrix, B. F., Coleman, D. C., & Whitemann, W. B. (2003). Identification of uncultured bacteria tightly associated with the Intestine of the Earthworms Lumricus rubellus. Soil Biology and Biochemistry, 35, 1547–1555.CrossRefGoogle Scholar
  110. Surekha, R., & Mahadev Kumar, R. (2007). Organic and potential organic sources for system of rice cultivation. Kisan World August, 26 (pp. 14-18)Google Scholar
  111. Suthar, S. (2006). Potential utilization of gaur gum industrial waste in vermicomposting production. Bioresource Technology, 7, 2474–2477.CrossRefGoogle Scholar
  112. Suthar, S. (2007). Production of vermifertilizer from guar gum industrial wastes by using composting earthworm Perionyx sansibaricus (Perrier). Environmentalist, 27, 329–335.CrossRefGoogle Scholar
  113. Suthar, S. (2008a). Microbial and decomposition efficiencies of monoculture and polyculture vermireactors based on epigic and anecic earthworms. World Journal of Microbial Technology, 24, 1471–1479.CrossRefGoogle Scholar
  114. Suthar, S. (2008b). Development of a novel epigeic-anecic-based polyculture vermireactor for efficient treatment of municipal sewage water sludge. International Journal Environment and Waste Management, 2, 84–101.CrossRefGoogle Scholar
  115. Suthar, S. (2008c). Vermicomposting of domestic waste by using two epigic earthworms (Perionyx excavatus and Perionyx sansibaricus). International Journal of Environmental Science and Technology, 5, 99–106.CrossRefGoogle Scholar
  116. Suthar, S. (2008d). Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. Environmentalist, 28, 76–84.CrossRefGoogle Scholar
  117. Suthar, S., Pravin, K., Mutiyar, & Singh S, (2012). Vermicomposting of milk processing industry sludge spiked with plant wastes. Bioresource Technology, 116, 214–219.CrossRefGoogle Scholar
  118. Teotia, S. P., Dubey, F. L., & McCalla, T. M. (1950). Effect of soluble mulching on number and activity of earthworms. Nebraska Agricultural Experimental Station Research Bulletin, 20, 165.Google Scholar
  119. Tewatia, R. K., Kalve, S. P., & Choudhary, R. S. (2007). Role of biofertilizers in Indian agriculture. Indian Journal of Fertilizer, 3, 111–118.Google Scholar
  120. Thakuria, D., Schmidt, O., Finan, D., Egan, D., & Doohan, F. M. (2010). Gut wall bacteria of earthworms: A natural selection process. ISME Journal, 4, 357–366.CrossRefGoogle Scholar
  121. Thomas, S., & Trivedy, R. K. (2002). Earthworm biotechnology for waste management and crop improvement a review of research. In Proceedings of national seminar on solid waste management, 12–14th December 2002, Allied Publication Pvt Ltd, Bangalore, India (pp. 120–123).Google Scholar
  122. Tiunov, A. V., & Scheu, S. (2000). Microfungal communities in soil litter and casts of Lumbricus terrestris L. (Lumbricidae): A laboratory experiment. Applied Soil Ecology, 14, 17–26.CrossRefGoogle Scholar
  123. Wallwork, J. A. (1984). Earthworm Biology (1st Indian Edn), Gulab Vazirani for Arnold-Heinemann, New Delhi (pp. 27–31). Calcutta: Zoological Survey of India.Google Scholar
  124. White, S. (1996). Vermiculture bioconversion in India. Worm Digest, June, 65.Google Scholar
  125. Wolter, C., & Scheu, S. (1999). Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia, 43, 891–900.Google Scholar
  126. Yadav, K. D., Vinod, T., & Mansoor, A. M. (2010). Vermicomposting of source separated human faeces for nutrient recycling. Waste Management, 30, 50–56.CrossRefGoogle Scholar
  127. Yang, J., Baoyi, L. V., Zhang, J., & Xing, M. (2014). Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods. Bioresource Technology, 154, 94–100.CrossRefGoogle Scholar
  128. Zajonc, I., & Sidar, V. (1990). Use of some wastes for vermin compost preparation and their influence on growth and reproduction of the earthworm Eisenia fetida. Polnohospodarstvo, 36, 742–752.Google Scholar
  129. Zambre, V. P., Padul, M. V., Yadav, A. A., & Shete, T. B. (2008). Vermiwash: Biochemical and microbiological approach as ecofriendly soil conditioner. Asian Research Publication Network Journal of Agricultural and Biological Science, 3, 1–5.Google Scholar
  130. Zhang, B. G., Rouland, C., Lattaud, G., & Lavelle, P. (1993). Activities of digestive enzymes in gut of the tropical earthworm Pontoscolex corethrurus. European Journal Soil Biology, 29, 7–11.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.S D M College of Engineering and TechnologyDharwadIndia

Personalised recommendations