Feruloyl Esterase: A Principal Biodegradative Enzyme



Feruloyl esterases catalyse the hydrolysis of the substrate feruloyl-polysaccharide in order to yield ferulate and polysaccharide as the products. These enzymes play an important role in hydrolysis of the otherwise recalcitrant hemicellulose in the plant cell wall to its monomers. Feruloyl esterases find wide applications in agriculture, biofuel production, biotechnology, degradation, food, pharmacology, medicine and in paper production industries.

Studies on isolation and characterization of eubacteria producing feruloyl esterases indicated their presence in sand dune and mangrove ecosystems of Goa. These bacteria were found to belong to genera such as Bacillus, Sporolactobacillus and Stomatococcus. Most of the isolates were found to grow on methyl ferulate (MFA), methyl sinapate (MSA), methyl caffeate (MCA), and methyl p-coumarate (MpCA). Interestingly, all the isolates showed growth and enzyme activity in the presence of metals tested such as copper, nickel, cobalt and zinc including dimethyl sulfoxide. These eubacteria, therefore, can be utilized in various industries in the development of value-added products for food and drugs.


Mangroves Feruloyl esterase Hemicellulose Hydroxycinnamates Ferulic acid Biofuels 


  1. Abokitse, K., Wu, M., Bergeron, H., Grosse, S., & Lau, P. C. (2010). Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Applied Microbiology and Biotechnology, 87, 195–203.CrossRefGoogle Scholar
  2. Akin, D. E., & Rigsby, L. L. (2008). Corn fiber: Structure, composition, and response to enzymes for fermentable sugars and coproducts. Applied Biochemistry and Biotechnology, 144, 59–68.CrossRefGoogle Scholar
  3. Ardiansyah, Ohsaki, Y., Shirakawa, H., Koseki, T., & Komai, M. (2008). Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive. Journal of Agriculture and Food Chemistry, 56, 2825–30.CrossRefGoogle Scholar
  4. Aurilia, V., Parracino, A., Saviano, M., Rossi, M., & DAuria, S. (2007). The psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from gamma-proteobacteria and yeast. Gene, 397, 51–57.CrossRefGoogle Scholar
  5. Bartolomé, B., Faulds, C. B., Kroon, P. A., Waldron, K., Gilbert, H. J., Hazlewood, G., & Williamson, G. (1997a). An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. Cellulosa esterase (XylD) from barleyand wheat cell walls. Applied and Environmental Microbiology, 63, 208–212.Google Scholar
  6. Bartolomé, B., Faulds, C. B., & Williamson, G. (1997b). Enzymic release of ferulic acid from barley spent grain. Journal of Cereal Science, 25, 285–288.CrossRefGoogle Scholar
  7. Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meessen, L., Sigoillot, J. C., Asther, M., & Asther, M. (2006). Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydrate Research, 341, 1820–1827.CrossRefGoogle Scholar
  8. Bhathena, J., Kulamarva, A., Martoni, C., Urbanska, A. M., & Prakash, S. (2008). Preparation and in vitro analysis of microencapsulated live Lactobacillus fermentum 11976 for augmentation of feruloyl esterase in the gastrointestinal tract. Biotechnology and Applied Biochemistry, 50, 1–9.CrossRefGoogle Scholar
  9. Borneman, W. C., Ljungdahl, L. G., Hartley, R. D., & Akin, D. E. (1991). Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Applied and Environmental Microbiology, 57, 2337–2344.Google Scholar
  10. Brézillon, C., Kroon, P. A., Faulds, C. B., Brett, G. M., & Williamson, G. (1996). Novel ferulic acid esterases are induced by growth of Aspergillus niger on sugar-beet pulp. Applied Microbiology and Biotechnology, 45, 371–376.CrossRefGoogle Scholar
  11. Buanafina, M. M., Langdon, T., Hauck, B., Dalton, S. J., & Morris, P. (2006). Manipulating the phenolic acid content and digestibility of italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Applied Biochemistry and Biotechnology, 129–132, 416–426.Google Scholar
  12. Buanafina, M. M., Langdon, T., Hauck, B., Dalton, S., & Morris, P. (2008). Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnology Journal, 6, 264–280.CrossRefGoogle Scholar
  13. Bunzel, M., Ralph, J., Funk, C., & Steinhart, H. (2003). Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. European Food Research and Technology, 217, 128–133.CrossRefGoogle Scholar
  14. Castanares, A., & Wood, T. M. (1992). Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochemical Society Transactions, 20, 275S.Google Scholar
  15. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2003a). Production and characterization of the Talaromyces stipitatus feruloyl esterase FAEC in Pichia pastoris: Identification of the nucleophilic serine. Protein Expression and Purification, 29, 176–184.CrossRefGoogle Scholar
  16. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2003b). A non-modular type-B feruloyl esterase from Neurospora crassa exhibits concentration dependent substrate inhibition. Biochemical Journal, 370, 417–427.CrossRefGoogle Scholar
  17. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004a). Identification of a type-D feruloyl esterase from Neurospora crassa. Applied Microbiology Biotechnology, 63, 567–570.CrossRefGoogle Scholar
  18. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004b). Functional classification of the microbial feruloyl esterases. Applied Microbiology Biotechnology, 63, 647–652.CrossRefGoogle Scholar
  19. David, C. G., Silas, G. V.-B., Marisa, T., William, J. K., Graeme, T. A., & Vickery, L. A. (2010). Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins, 78, 1457–1469.Google Scholar
  20. De Vries, R. P., Michelsen, B., Poulsen, C. H., Kroon, P. A., van den Heuvel, R. H., Faulds, C. B., Williamson, G., van den Hombergh, J. P., & Visser, J. (1997). The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Applied and Environmental Microbiology, 63, 4638–4644.Google Scholar
  21. Dodd, D., Kocherginskaya, S. A., Spies, M. A., Beery, K. E., Abbas, C. A., Mackie, R. I., & Cann, I. K. (2009). Biochemical analysis of a beta-D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. Journal of Bacteriology, 191, 3328–3338.CrossRefGoogle Scholar
  22. Donaghy, J., Kelly, P. F., & McKay, A. M. (1998). Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Applied Microbiology and Biotechnology, 50, 257–260.CrossRefGoogle Scholar
  23. Donaghy, J. A., Bronnenmeier, K., Soto-Kelly, P. F., & McKay, A. M. (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. Journal of Applied Microbiology, 88, 458–466.CrossRefGoogle Scholar
  24. Faulds, C. B., & Williamson, G. (1991). The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology, 137, 2339–2345.CrossRefGoogle Scholar
  25. Faulds, C. B., & Williamson, G. (1994). Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger: Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology, 140, 779–787.CrossRefGoogle Scholar
  26. Fazary, A. E., & Ju, Y. H. (2008). Production, partial purification and characterization of feruloyl esterase by Aspergillus awamori in submerged fermentation. Biotechnology Journal, 3, 1264–1275.CrossRefGoogle Scholar
  27. García, B. L., Ball, A. S., Rodriguez, J., Perez-leblic, M. I., Arias, M. E., & Copa-Patiño, J. L. (1998). Production and characterization of ferulic acid esterase activity in crude extracts by Streptomyces avermitilis CECT 3339. Applied Microbiology and Biotechnology, 50, 213–218.CrossRefGoogle Scholar
  28. Goldstone, D. C., Villas-Boas, S. G., Till, M., Kelly, W. J., Attwood, G. T., & Arcus, V. L. (2010). Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins, 78, 1457–1469.Google Scholar
  29. Grabber, J. H., Hatfield, R. D., Ralph, J., Zon, J., & Amrhein, N. (1995). Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry, 40, 1077–1082.CrossRefGoogle Scholar
  30. Grabber, J. H., Ralph, J., & Hatfield, R. D. (2000). Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. Journal of Agriculture and Food Chemistry, 48, 6106–6113.CrossRefGoogle Scholar
  31. Hassan, S., & Hugouvieux-Cotte-Pattat, N. (2011). Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectatelyases by ferulic acid. Journal of Bacteriology, 193, 963–970.CrossRefGoogle Scholar
  32. Hatzakis, N. S., Daphnomili, D., & Smonou, I. (2003). Ferulic acid esterase from Humicola insolens catalyzes enantioselective transesterification of secondary alcohols. Journal of Molecular Catalysis B: Enzymatic, 21, 309–311.CrossRefGoogle Scholar
  33. Hegde, S., & Muralikrishna, G. (2009). Isolation and partial characterization of alkaline feruloyl esterases from Aspergillus niger CFR 1105 grown on wheat bran. World Journal of Microbiology and Biotechnology, 25, 1963–1969.CrossRefGoogle Scholar
  34. Hermoso, J. A., Sanz-Aparicio, J., Molina, R., Juge, N., Gonzalez, R., & Faulds, C. B. (2004). The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. Journal of Molecular Biology, 338, 495–506.CrossRefGoogle Scholar
  35. Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S., & Gescher, A. C. (2000). Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prevention, 9, 1163–1170.Google Scholar
  36. Iiyama, K., & Lam, T. B. T. (2001). Structural characteristics of cell walls of forage grasses—their nutritional evaluation for ruminants—review. Asian-Australasian Journal of Animal Sciences, 14, 862–879.CrossRefGoogle Scholar
  37. Iiyama, K., Lam, T. B. T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104, 315–320.Google Scholar
  38. Ishii, T. (1997). Structure and functions of feruloylated polysaccharides. Plant Science, 127, 111–127.CrossRefGoogle Scholar
  39. Jeffries, T. W. (1990). Biodegradation of lignin-carbohydrate complexes. Biodegradation, 1, 163–176.CrossRefGoogle Scholar
  40. Jin, Y., Yan, E. Z., & Fan, Y. (2005). Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacologia Sinica, 26, 943–951.CrossRefGoogle Scholar
  41. Jin, Y., Fan, Y., & Yan, E. Z. (2006). Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6–p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacologia Sinica, 27, 1309–1316.CrossRefGoogle Scholar
  42. Jung, E. H., Kim, S. R., Hwang, I. K., & Ha, T. Y. (2007). Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. Journal of Agriculture and Food Chemistry, 55, 9800–9804.CrossRefGoogle Scholar
  43. Kanauchi, M., Watanabe, S., Tsukada, T., Atta, K., Kakuta, T., & Koizumi, T. (2008). Purification and characteristics of feruloyl esterase from Aspergillus awamori G-2 strain. Journal of Food Science, 73, C458–C463.CrossRefGoogle Scholar
  44. Kheder, F., Delaunay, S., Abo-Chameh, G., Paris, C., Muniglia, L., & Girardin, M. (2009). Production and biochemical characterization of a type B ferulic acid esterase from Streptomyces ambofaciens. Canadian Journal of Microbiology, 55, 729–738.CrossRefGoogle Scholar
  45. Knoshaug, E. P., Selig, M. J., Baker, J. O., Decker, S. R., Himmel, M. E., & Adney, W. S. (2008). Heterologous expression of two ferulic acid esterases from Penicillium funiculosum. Applied Biochemistry and Biotechnology, 146, 79–87.CrossRefGoogle Scholar
  46. Koseki, T., Mochizuki, K., Kisara, H., Miyanaga, A., Fushinobu, S., Murayama, T., & Shiono, Y. (2009a). Characterization of a chimeric enzyme comprising feruloyl esterase and family 42 carbohydrate-binding module. Applied Microbiology and Biotechnology, 86, 155–161.CrossRefGoogle Scholar
  47. Koseki, T., Hori, A., Seki, S., Murayama, T., & Shiono, Y. (2009b). Characterization of two distinct feruloyl esterases, AoFaeB and AoFaeC, from Aspergillus oryzae. Applied Microbiology and Biotechnology, 83, 689–696.CrossRefGoogle Scholar
  48. Kroon, P. A., Garcia-Conesa, M. T., Fillingham, I. J., Hazlewood, G. P., & Williamson, G. (1999). Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. Journal of the Science and Food Agriculture, 79, 428–434.CrossRefGoogle Scholar
  49. MacKenzie, R. C., & Bilous, D. (1988). Ferulic acid esterase activity from Schizophyllum commune. Applied and Environmental Microbiology, 54, 1170–1173.Google Scholar
  50. Mackenzie, C. R., Bilous, D., Schneider, H., & Johnston, K. G. (1987). Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Applied and Environmental Microbiology, 53, 2835–2839.Google Scholar
  51. Mandalari, G., Bisignano, G., Lo Curto, R. B., Waldron, K. W., & Faulds, C. B. (2008). Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products. Bioresource Technology, 99, 5130–5133.CrossRefGoogle Scholar
  52. McAuley, K. E., Svendsen, A., Patkar, S. A., & Wilson, K. S. (2004). Structure of a feruloyl esterase from Aspergillus niger. Acta Crystallographica Section D, 60, 878–887.CrossRefGoogle Scholar
  53. McClendon, S. D., Shin, H. D., & Chen, R. R. (2011). Novel bacterial ferulic acid esterase from Cellvibrio japonicus and its application in ferulic acid release and xylan hydrolysis. Biotechnology Letters, 33, 47–54.CrossRefGoogle Scholar
  54. Moukouli, M., Topakas, E., & Christakopoulos, P. (2008). Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum. Applied Microbiology and Biotechnology, 79, 245–254.CrossRefGoogle Scholar
  55. Murray, J. C., Burch, J. A., Streilein, R. D., Iannacchione, M. A., Pinnell, S. R., & Hall, R. P. (2008). A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. Journal of the American Academy of Dermatology, 59, 418–425.CrossRefGoogle Scholar
  56. Ou, S., & Kwok, K. C. (2004). Ferulic acid: Pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84, 1261–1269.CrossRefGoogle Scholar
  57. Panagiotou, G., Olavarria, R., & Olsson, L. (2007). Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. Journal of Biotechnology, 130, 219–228.CrossRefGoogle Scholar
  58. Puchart, V., Vršanská, M., Mastihubová, M., Topakas, E., Vafiadi, C., Faulds, C. B., Tenkanen, M., Christakopoulos, P., & Biely, P. (2007). Substrate and positional specificity of feruloyl esterases for monoferuloylated and monoacetylated 4-nitrophenyl glycoside. Journal of Biotechnology, 127, 235–243.CrossRefGoogle Scholar
  59. Qi, M., Wang, P., Selinger, L. B., Yanke, L. J., Forster, R. J., & McAllister, T. A. (2011). Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. Journal of Applied Microbiolgy, 110, 1341–1350.CrossRefGoogle Scholar
  60. Ralet, M. C., Faulds, C. B., Williamson, G., & Thibault, J. F. (1994). Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carbohydrate Research, 263, 257–269.CrossRefGoogle Scholar
  61. Ralph, J., Quideau, S., Grabber, J. H., & Hatfeild, R. D. (1994). Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. Journal of the Chemical Society Perkin Translation, 1, 3485–3498.CrossRefGoogle Scholar
  62. Record, E., Asther, M., Sigoillot, C., Pagès, S., Punt, P. J., Delattre, M., Haon, M., van den Hondel, C. A., Sigoillot, J. C., Lesage-Meessen, L., & Asther, M. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology, 62, 349–55.CrossRefGoogle Scholar
  63. Rouau, X., Cheynier, V., Surget, A., Gloux, D., Barron, C., Meudec, E., Louis-Montero, J., & Criton, M. (2003). A dehydrotrimer of ferulic acid from maize bran. Phytochemistry, 63, 899–903.CrossRefGoogle Scholar
  64. Rumbold, K., Biely, P., Mastihubova, M., Gudelj, M., Gubitz, G., Robra, K. H., & Prior, B. A. (2003). Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 69, 5622–5626.CrossRefGoogle Scholar
  65. Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., & Rolando, C. (1985). Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry, 24, 1359–1362.CrossRefGoogle Scholar
  66. Schwimmer, S. (1981). Source book of enzymology (pp. 581–592). Westport: Avi Publishing.Google Scholar
  67. Shin, H. D., & Chen, R. R. (2006). Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microbiology and Technology, 38, 478–485.CrossRefGoogle Scholar
  68. Study on synthetic organic chemistry using ferulic acid and its homologous phenols as basic raw materials: Study on the substance conversion of ferulic acid using an organic synthetic method. Ministry of Education, Culture, Sports, Science and Technology (1998–2000).Google Scholar
  69. Tapin, S., Sigoillot, J. C., Asther, M., & Petit-Conil, M. (2006). Feruloyl esterase utilization for simultaneous processing of nonwood plants into phenolic compounds and pulp fibers. Journal of Agriculture and Food Chemistry, 54, 3697–3703.CrossRefGoogle Scholar
  70. Tarbouriech, N., Prates, J. A., Fontes, C. M., & Davies, G. J. (2005). Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium thermocellum. Acta Crystallographica Section D, 61, 194–197.CrossRefGoogle Scholar
  71. Tenkanen, M., Schuseil, J., Puls J., & Poutanen, K. (1991). Production, purification and characterization of an esterase liberating phenolic acids from lignocellulosics. Journal of Biotechnology, 18, 69–84.CrossRefGoogle Scholar
  72. Topakas, E., Christakopoulos, P., & Faulds, C. B. (2005). Comparison of mesophilic and thermophilic feruloyl esterases: Characterization of their substrate specificity for methyl phenylalkanoates. Journal of Biotechnology, 115, 355–366.CrossRefGoogle Scholar
  73. Topakas, E., Vafiadi, C., & Christakopoulos, P. (2007). Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry, 42, 497–509.CrossRefGoogle Scholar
  74. Tournas, J. A., Lin, F. H., Burch, J. A., Selim, M. A., Monterio-Riviere, N. A., Zielinski, J. E., & Pinnell, S. R. (2006). Ubiquinone, idebenone, and kinetin provide ineffective photoprotection to skin when compared to a topical antioxidant combination of vitamin C and E with ferulic acid. Journal of Investigative Dermatology, 126, 1185–7.CrossRefGoogle Scholar
  75. Wang, Y., & McAllister, T. A. (2002). Rumen microbes, enzymes and feed digestion—a review. Asian-Australasian Journal of Animation Sciences, 15, 1659–1676.CrossRefGoogle Scholar
  76. Wang, B., Ouyang, J., & Liu, Y. (2004a). Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. Journal of Cardiovascular Pharmacology, 43, 549–554.CrossRefGoogle Scholar
  77. Wang, X., Geng, X., Egashira, Y., & Sanada, H. (2004b). Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appllied and Environmental Microbiology, 70, 2367–2372.CrossRefGoogle Scholar
  78. Wyman, C. E. (1994). Alternative fuels from biomass and their impact on carbon dioxide accumulation. Applied Biochemistry and Biotechnology, 45/46, 897–915.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations