Bacteria Adhered to Particulate Matter and Their Role in Plant Litter Mineralization



In the mangrove ecosystem, plant litter is the primary source of nutrients for the mangrove microbial community. Many bacteria prefer to grow attached to the plant litter using it as a substrate. Initially, the bacterium comes into contact with the substrate by means of various physicochemical forces and then makes such adhesion irreversible by binding to it with appendages and structures such as flagella, pili, fimbriae, exopolymer, holdfast, etc. Such adhesion not only ensures the supply of nutrients but also protects the microbial community. The net result is the degradation of the substrate by the adhered bacteria contributing to the recycling of organic matter and formation of detritus.

Studies on the adhered bacteria from the mangrove, estuaries and coastal ecosystems indicated that halotolerant bacteria predominate and are responsible for most of the degradation as compared with the halophilic bacteria. These bacteria showed varied enzyme activities such as cellulase, amylase, tannase, lignin peroxidase and lipase including siderophore production. About 48 % of the halotolerant isolates showed multiple enzyme production indicating the potential of these isolates in the mineralization of plant litter in mangrove ecosystems.


Mangrove Halophiles Adhesion Enzymes Siderophores 


  1. Abbasnezhad, H., Gray M., & Foght, J. M. (2011). Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Applied Microbiology and Biotechnology, 92, 653–75.CrossRefGoogle Scholar
  2. An, Y. H., & Friedman, R. J. (2000). Handbook of bacterial adhesion: Principles, methods, and applications (pp. 72–73). Humana Press Inc.Google Scholar
  3. Anderson, B. N., Ding, A. M., Nilsson, L. M., Kusuma, K., Tchesnokova, V., Vogel, V., Sokurenko, E. V., & Thomas, W. E. (2007). Weak rolling adhesion enhances bacterial surface colonization. Journal of Bacteriology, 189, 1794–1802.CrossRefGoogle Scholar
  4. Balagurunathan, R., & Radhakrishnan, M. (2007). Microbial Siderophores-gateway for iron removal. Envis Centre Newsletter, 5.Google Scholar
  5. Bhaskar, P. V., & Bhosle, N. B. (2005). Microbial extracellular polymeric substances in marine biogeochemical processes. Current Science, 88, 45–53.Google Scholar
  6. Bitton, G., & Marshall, K. C. (1980). Adsorption of microorganisms to surfaces (pp. 8–11). New York: John Wiley and Sons Inc.Google Scholar
  7. Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I., & Béjar, V. (2001). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 51, 1625–1632.CrossRefGoogle Scholar
  8. Britto, E. M. S., Guyoneaud, R., Goñi-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., Crapez, M. A. C., Wasserman, J. C. A., & Duran, R. (2006). Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay. Brazil Research in Microbiology, 157, 752–762.CrossRefGoogle Scholar
  9. Crump, B. C., Baross J. A., & Simenstad, C. A. (1998). Dominance of particle-attached bacteria in the Columbia River estuary. Aquatic microbial Ecology, 14, 7–18.CrossRefGoogle Scholar
  10. Cytryn, E., Minz, D., Gieseke, A., & van Rijn, J. (2006).Transient development of filamentous Thiothrix species in a marine sulfide oxidizing, denitrifying fluidized bed reactor. FEMS Microbiology Letters, 256, 22–29.CrossRefGoogle Scholar
  11. Dittmar, T., Hertkorn, N., Kattner, G., & Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles, 20, 1–7CrossRefGoogle Scholar
  12. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., & Stackebrandt, E. (2006a). The prokaryotes: A handbook on the biology of bacteria: ecophysiology and biochemistry (3rd Edn., pp. 265–266). New York: Springer Science Publications 2.Google Scholar
  13. Dworkin, M., Falkow, S., Rosenberg E., Schleifer, K. H., & Stackebrandt, E. (2006b). The prokaryotes: A handbook on the biology of bacteria: symbiotic associations, biotechnology, applied microbiology (3rd Edn., pp. 152–155, 214–231). Springer science publications 1.Google Scholar
  14. Gao, Z., Ruan, L., Chen, X., Zhang, Y., & Xu, X. (2010). A novel salt-tolerant endo-beta-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Applied Microbiology and Biotechnology, 87, 1373–1382.CrossRefGoogle Scholar
  15. Gaonkar, T., & Bhosle, S. (2013). Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere, 93, 1835–1843.CrossRefGoogle Scholar
  16. Garcia, M. T., Mellado, E., Ostos, J. C., & Ventosa, A. (2004). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. International Journal of Systematic and Evolutionary Microbiology, 54, 1723–1728.CrossRefGoogle Scholar
  17. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., & Bonin, P. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. International Journal of Systematic Bacteriology, 42, 568–576.CrossRefGoogle Scholar
  18. Godinho, A., & Bhosle, S. (2013). Rhizosphere bacteria from coastal sand dunes and their applications in agriculture. In D. K. Maheshwari, S. Meenu, & A. Abhinav (Eds.), Bacteria in agrobiology: Crop productivity (pp. 77–96). Berlin: Springer publication.CrossRefGoogle Scholar
  19. Gonzalez, J. M., Mayer, F., Moran, M. A., Hodson, R. E., & Whitman, W. B. (1997a). Microbulbifer hydrolyticus gen. nov. Sp. nov., and Marinobacterium georgiense gen. nov. Sp. nov., two marine bacteria from lignin rich pulp mill waste enrichment community. International Journal of Systematic Bacteriology, 47(2), 369–376.Google Scholar
  20. Gonzalez, J. M., Mayer, F., Moran, M. A., Hodson, R. E., & Whitman, W. B. (1997b). Sagittula stellata gen. nov. Sp. nov., a Lignin—transforming bacterium from a coastal environment. International Journal of Systematic Bacteriology, 47, 773–780.CrossRefGoogle Scholar
  21. Gottenbos, B., Busscher, H. J., Van der Mei, H. C., & Nieuwenhuis, P. (2002). Pathogenesis and prevention of biomaterial centered infections. Journal of Materials Science; Materials in Medicine, 13, 717–722.CrossRefGoogle Scholar
  22. Gulig, P., Bourdage, K., & Starks, A. (2005). Molecular Pathogenesis of Vibrio vulnificus. Journal of Microbiology, 43, 118–113.Google Scholar
  23. Haiko, J., & Westerlund-Wikström, B. (2013). The Role of the bacterial flagellum in adhesion and virulence. Biology, 2, 1242–1267.CrossRefGoogle Scholar
  24. Hayashi, H., Tsuneda, S., Hirata, A., & Sasaki, H. (2001). Soft particle analysis of bacterial cells and its interpretation of cell adhesion behaviors in terms of DLVO theory. Colloids and Surfaces B: Biointerfaces, 22, 149–157.CrossRefGoogle Scholar
  25. Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces B: Biointerfaces, 14, 4105–4119.CrossRefGoogle Scholar
  26. Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89, 23–30.CrossRefGoogle Scholar
  27. Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to Biomaterials and of techniques used in estimating bacteria-material Interactions. European Cells and Materials, 8, 37–57.Google Scholar
  28. Kharangate-Lad, A., & Bhosle, S. (2014). Siderophore producing halophilic and halotolerant bacteria adhered to mangrove plant litter. NeBIO, 5, 56–60.Google Scholar
  29. Kokare, C. R., Chakraborty, S., Khopade, A. N., & Mahadik, K. R. (2009). Biofilm importance and Applications. Indian Journal of Biotechnology, 8, 159–231.Google Scholar
  30. Labrenz, M., Lawson, P. A., Tindall, B. J., Collins, M. D., & Hirsch, P. (2005). Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55, 41–47.CrossRefGoogle Scholar
  31. Levi A., & Jenal U. (2006). Holdfast formation in motile swarmer cells optimizes surface attachment during caulobacter crescentus development. Journal of Bacteriology, 188, 5315–5318.CrossRefGoogle Scholar
  32. Mancuso, N. C. A., Garon, S., Bowman, J. P., Raguenes, G., & Guezennec, J. (2004). Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96, 1057–1066.CrossRefGoogle Scholar
  33. Martinez-Canovas, M. J., Quesada, E., Llamas I., & Bejar V. (2004a). Halomonas ventosae sp. nov; a moderately halophilic denitrifying bacterium. International Journal of Systematic and Evolutionary Microbiology, 54, 733–737.CrossRefGoogle Scholar
  34. Martinez-Canovas, M. J., Bejar, V., Martinez–Checa, F., & Quesada, E. (2004b). Halomonas anticariensis sp. nov.; from Feunte de Piedra, a saline wetland wildfowl reserve in Malaga, Southern Spain. International Journal of Systematic and Evolutionary Microbiology, 54, 1329–1332.CrossRefGoogle Scholar
  35. Martinez-Canovas, M. J., Quesada, E., Martinez–Checa, F., Del Moral, A., & Bejar, V. (2004c). Salipiger mucescens gen. nov., sp. nov., a moderately halophilic—exopolysaccharide producing bacterium isolated from hypersaline soil belonging to a-proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 54, 1735–1740.CrossRefGoogle Scholar
  36. Martínez-Checa, F., Béjar, V., Martínez-Cánovas, M. J., Llamas, I., & Quesada, E. (2005). Halomonas almeriensis sp. nov; amoderately halophilic exopolysaccharide producingbacterium from Cabo de gata (Almeria, South-east Spain). International Journal of Systematic and Evolutionary Microbiology, 55, 2007–2011.CrossRefGoogle Scholar
  37. Mata, J. A., Bejar, V., Llamas, I., Arias, S., Bressollier, P., Tellon, R., Urdaci, M. C., & Quesada, E. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Research in Microbiology, 157, 827–835.CrossRefGoogle Scholar
  38. Merker, R., & Smit, J. (1988). Characterization of the adhesive holdfast of marine and freshwater Caulobacters. Applied and Environmental Microbiology, 54, 2078–2085.Google Scholar
  39. Morra M., & Cassinelli C. (1997). Organic surface chemistry on titanium surfaces via thin film deposition. Journal of Biomedical Materials Research, 37, 198–206.CrossRefGoogle Scholar
  40. Ofek, I., Hasty, D. L., & Doyle, R. J. (2003). Bacterial Adhesion to animal cells and tissues (pp. 1–13). ASM press.Google Scholar
  41. Ong, C. J, Wong, M. M. Y, & Smit, J. (1990). Attachment of the Adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. Journal of Bacteriology, 172, 1448–1456.Google Scholar
  42. Perestelo, F., Falcon, M. A., & de la Fuente, G. (1990). Biotransformation of kraft lignin fractions by Serratia marcescens. Letters in Applied Microbiology, 10, 61–64.CrossRefGoogle Scholar
  43. Prescott, L. M., Harley, J. P., & Klein, D. A. (2005). Microbiology (6th International Edn., pp. 61–62, 119–120). Mc Graw Hill Publishers.Google Scholar
  44. Quintero, E. J., Busch, K., & Weiner, R. M. (1998). Spatial and temporal deposition of adhesive extracellular polysaccharide capsule and fimbriae by hyphomonas strain MHS-3. Applied and Environmental Microbiology, 64, 1246–1255.Google Scholar
  45. Romanenko, L. A., Schumann, P., Rohde, M., Mikhailov, V. V., & Stackebrandt, E. (2002). Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. International Journal of Systematic and Evolutionary Microbiology, 52, 1767–1772.CrossRefGoogle Scholar
  46. Toh, E., Kurtz, H. D. Jr., & Brun, Y. V. (2008). Characterization of Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significantredundancy in initiating glycosyl transferase and polymerase steps. Journal of Bacteriology, 190, 7219–7231.CrossRefGoogle Scholar
  47. Tsang, P. H., Li, G., Brun, Y. V., Freund, B. L., & Tang, J. X. (2006). Adhesion of single bacterial cells in the micronewton range. Proceedings of the National Academy of Sciences, 103, 5764–5768.CrossRefGoogle Scholar
  48. Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14, 2535–2554CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations