Skip to main content

Bacteria Adhered to Particulate Matter and Their Role in Plant Litter Mineralization

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria
  • 532 Accesses

Abstract

In the mangrove ecosystem, plant litter is the primary source of nutrients for the mangrove microbial community. Many bacteria prefer to grow attached to the plant litter using it as a substrate. Initially, the bacterium comes into contact with the substrate by means of various physicochemical forces and then makes such adhesion irreversible by binding to it with appendages and structures such as flagella, pili, fimbriae, exopolymer, holdfast, etc. Such adhesion not only ensures the supply of nutrients but also protects the microbial community. The net result is the degradation of the substrate by the adhered bacteria contributing to the recycling of organic matter and formation of detritus.

Studies on the adhered bacteria from the mangrove, estuaries and coastal ecosystems indicated that halotolerant bacteria predominate and are responsible for most of the degradation as compared with the halophilic bacteria. These bacteria showed varied enzyme activities such as cellulase, amylase, tannase, lignin peroxidase and lipase including siderophore production. About 48 % of the halotolerant isolates showed multiple enzyme production indicating the potential of these isolates in the mineralization of plant litter in mangrove ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasnezhad, H., Gray M., & Foght, J. M. (2011). Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Applied Microbiology and Biotechnology, 92, 653–75.

    Article  Google Scholar 

  • An, Y. H., & Friedman, R. J. (2000). Handbook of bacterial adhesion: Principles, methods, and applications (pp. 72–73). Humana Press Inc.

    Google Scholar 

  • Anderson, B. N., Ding, A. M., Nilsson, L. M., Kusuma, K., Tchesnokova, V., Vogel, V., Sokurenko, E. V., & Thomas, W. E. (2007). Weak rolling adhesion enhances bacterial surface colonization. Journal of Bacteriology, 189, 1794–1802.

    Article  Google Scholar 

  • Balagurunathan, R., & Radhakrishnan, M. (2007). Microbial Siderophores-gateway for iron removal. Envis Centre Newsletter, 5.

    Google Scholar 

  • Bhaskar, P. V., & Bhosle, N. B. (2005). Microbial extracellular polymeric substances in marine biogeochemical processes. Current Science, 88, 45–53.

    Google Scholar 

  • Bitton, G., & Marshall, K. C. (1980). Adsorption of microorganisms to surfaces (pp. 8–11). New York: John Wiley and Sons Inc.

    Google Scholar 

  • Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I., & Béjar, V. (2001). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 51, 1625–1632.

    Article  Google Scholar 

  • Britto, E. M. S., Guyoneaud, R., Goñi-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., Crapez, M. A. C., Wasserman, J. C. A., & Duran, R. (2006). Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay. Brazil Research in Microbiology, 157, 752–762.

    Article  Google Scholar 

  • Crump, B. C., Baross J. A., & Simenstad, C. A. (1998). Dominance of particle-attached bacteria in the Columbia River estuary. Aquatic microbial Ecology, 14, 7–18.

    Article  Google Scholar 

  • Cytryn, E., Minz, D., Gieseke, A., & van Rijn, J. (2006).Transient development of filamentous Thiothrix species in a marine sulfide oxidizing, denitrifying fluidized bed reactor. FEMS Microbiology Letters, 256, 22–29.

    Article  Google Scholar 

  • Dittmar, T., Hertkorn, N., Kattner, G., & Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles, 20, 1–7

    Article  Google Scholar 

  • Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., & Stackebrandt, E. (2006a). The prokaryotes: A handbook on the biology of bacteria: ecophysiology and biochemistry (3rd Edn., pp. 265–266). New York: Springer Science Publications 2.

    Google Scholar 

  • Dworkin, M., Falkow, S., Rosenberg E., Schleifer, K. H., & Stackebrandt, E. (2006b). The prokaryotes: A handbook on the biology of bacteria: symbiotic associations, biotechnology, applied microbiology (3rd Edn., pp. 152–155, 214–231). Springer science publications 1.

    Google Scholar 

  • Gao, Z., Ruan, L., Chen, X., Zhang, Y., & Xu, X. (2010). A novel salt-tolerant endo-beta-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Applied Microbiology and Biotechnology, 87, 1373–1382.

    Article  Google Scholar 

  • Gaonkar, T., & Bhosle, S. (2013). Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere, 93, 1835–1843.

    Article  Google Scholar 

  • Garcia, M. T., Mellado, E., Ostos, J. C., & Ventosa, A. (2004). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. International Journal of Systematic and Evolutionary Microbiology, 54, 1723–1728.

    Article  Google Scholar 

  • Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., & Bonin, P. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. International Journal of Systematic Bacteriology, 42, 568–576.

    Article  Google Scholar 

  • Godinho, A., & Bhosle, S. (2013). Rhizosphere bacteria from coastal sand dunes and their applications in agriculture. In D. K. Maheshwari, S. Meenu, & A. Abhinav (Eds.), Bacteria in agrobiology: Crop productivity (pp. 77–96). Berlin: Springer publication.

    Chapter  Google Scholar 

  • Gonzalez, J. M., Mayer, F., Moran, M. A., Hodson, R. E., & Whitman, W. B. (1997a). Microbulbifer hydrolyticus gen. nov. Sp. nov., and Marinobacterium georgiense gen. nov. Sp. nov., two marine bacteria from lignin rich pulp mill waste enrichment community. International Journal of Systematic Bacteriology, 47(2), 369–376.

    Google Scholar 

  • Gonzalez, J. M., Mayer, F., Moran, M. A., Hodson, R. E., & Whitman, W. B. (1997b). Sagittula stellata gen. nov. Sp. nov., a Lignin—transforming bacterium from a coastal environment. International Journal of Systematic Bacteriology, 47, 773–780.

    Article  Google Scholar 

  • Gottenbos, B., Busscher, H. J., Van der Mei, H. C., & Nieuwenhuis, P. (2002). Pathogenesis and prevention of biomaterial centered infections. Journal of Materials Science; Materials in Medicine, 13, 717–722.

    Article  Google Scholar 

  • Gulig, P., Bourdage, K., & Starks, A. (2005). Molecular Pathogenesis of Vibrio vulnificus. Journal of Microbiology, 43, 118–113.

    Google Scholar 

  • Haiko, J., & Westerlund-Wikström, B. (2013). The Role of the bacterial flagellum in adhesion and virulence. Biology, 2, 1242–1267.

    Article  Google Scholar 

  • Hayashi, H., Tsuneda, S., Hirata, A., & Sasaki, H. (2001). Soft particle analysis of bacterial cells and its interpretation of cell adhesion behaviors in terms of DLVO theory. Colloids and Surfaces B: Biointerfaces, 22, 149–157.

    Article  Google Scholar 

  • Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces B: Biointerfaces, 14, 4105–4119.

    Article  Google Scholar 

  • Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89, 23–30.

    Article  Google Scholar 

  • Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to Biomaterials and of techniques used in estimating bacteria-material Interactions. European Cells and Materials, 8, 37–57.

    Google Scholar 

  • Kharangate-Lad, A., & Bhosle, S. (2014). Siderophore producing halophilic and halotolerant bacteria adhered to mangrove plant litter. NeBIO, 5, 56–60.

    Google Scholar 

  • Kokare, C. R., Chakraborty, S., Khopade, A. N., & Mahadik, K. R. (2009). Biofilm importance and Applications. Indian Journal of Biotechnology, 8, 159–231.

    Google Scholar 

  • Labrenz, M., Lawson, P. A., Tindall, B. J., Collins, M. D., & Hirsch, P. (2005). Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55, 41–47.

    Article  Google Scholar 

  • Levi A., & Jenal U. (2006). Holdfast formation in motile swarmer cells optimizes surface attachment during caulobacter crescentus development. Journal of Bacteriology, 188, 5315–5318.

    Article  Google Scholar 

  • Mancuso, N. C. A., Garon, S., Bowman, J. P., Raguenes, G., & Guezennec, J. (2004). Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96, 1057–1066.

    Article  Google Scholar 

  • Martinez-Canovas, M. J., Quesada, E., Llamas I., & Bejar V. (2004a). Halomonas ventosae sp. nov; a moderately halophilic denitrifying bacterium. International Journal of Systematic and Evolutionary Microbiology, 54, 733–737.

    Article  Google Scholar 

  • Martinez-Canovas, M. J., Bejar, V., Martinez–Checa, F., & Quesada, E. (2004b). Halomonas anticariensis sp. nov.; from Feunte de Piedra, a saline wetland wildfowl reserve in Malaga, Southern Spain. International Journal of Systematic and Evolutionary Microbiology, 54, 1329–1332.

    Article  Google Scholar 

  • Martinez-Canovas, M. J., Quesada, E., Martinez–Checa, F., Del Moral, A., & Bejar, V. (2004c). Salipiger mucescens gen. nov., sp. nov., a moderately halophilic—exopolysaccharide producing bacterium isolated from hypersaline soil belonging to a-proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 54, 1735–1740.

    Article  Google Scholar 

  • Martínez-Checa, F., Béjar, V., Martínez-Cánovas, M. J., Llamas, I., & Quesada, E. (2005). Halomonas almeriensis sp. nov; amoderately halophilic exopolysaccharide producingbacterium from Cabo de gata (Almeria, South-east Spain). International Journal of Systematic and Evolutionary Microbiology, 55, 2007–2011.

    Article  Google Scholar 

  • Mata, J. A., Bejar, V., Llamas, I., Arias, S., Bressollier, P., Tellon, R., Urdaci, M. C., & Quesada, E. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Research in Microbiology, 157, 827–835.

    Article  Google Scholar 

  • Merker, R., & Smit, J. (1988). Characterization of the adhesive holdfast of marine and freshwater Caulobacters. Applied and Environmental Microbiology, 54, 2078–2085.

    Google Scholar 

  • Morra M., & Cassinelli C. (1997). Organic surface chemistry on titanium surfaces via thin film deposition. Journal of Biomedical Materials Research, 37, 198–206.

    Article  Google Scholar 

  • Ofek, I., Hasty, D. L., & Doyle, R. J. (2003). Bacterial Adhesion to animal cells and tissues (pp. 1–13). ASM press.

    Google Scholar 

  • Ong, C. J, Wong, M. M. Y, & Smit, J. (1990). Attachment of the Adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. Journal of Bacteriology, 172, 1448–1456.

    Google Scholar 

  • Perestelo, F., Falcon, M. A., & de la Fuente, G. (1990). Biotransformation of kraft lignin fractions by Serratia marcescens. Letters in Applied Microbiology, 10, 61–64.

    Article  Google Scholar 

  • Prescott, L. M., Harley, J. P., & Klein, D. A. (2005). Microbiology (6th International Edn., pp. 61–62, 119–120). Mc Graw Hill Publishers.

    Google Scholar 

  • Quintero, E. J., Busch, K., & Weiner, R. M. (1998). Spatial and temporal deposition of adhesive extracellular polysaccharide capsule and fimbriae by hyphomonas strain MHS-3. Applied and Environmental Microbiology, 64, 1246–1255.

    Google Scholar 

  • Romanenko, L. A., Schumann, P., Rohde, M., Mikhailov, V. V., & Stackebrandt, E. (2002). Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. International Journal of Systematic and Evolutionary Microbiology, 52, 1767–1772.

    Article  Google Scholar 

  • Toh, E., Kurtz, H. D. Jr., & Brun, Y. V. (2008). Characterization of Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significantredundancy in initiating glycosyl transferase and polymerase steps. Journal of Bacteriology, 190, 7219–7231.

    Article  Google Scholar 

  • Tsang, P. H., Li, G., Brun, Y. V., Freund, B. L., & Tang, J. X. (2006). Adhesion of single bacterial cells in the micronewton range. Proceedings of the National Academy of Sciences, 103, 5764–5768.

    Article  Google Scholar 

  • Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14, 2535–2554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kharangate-Lad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kharangate-Lad, A. (2015). Bacteria Adhered to Particulate Matter and Their Role in Plant Litter Mineralization. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_11

Download citation

Publish with us

Policies and ethics