Skip to main content

Application of Wireless Sensor Networks Technology for Induction Motor Monitoring in Industrial Environments

  • Chapter
  • 1673 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 13))

Abstract

In an industrial environment, mechanical systems driven by electric motors are used in most production processes, accounting for more than two thirds of industry electricity consumption. Regarding the type of motors usually employed, about 90% are three-phase AC induction based [1], mainly due to its cost effectiveness and mechanical robustness [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanitsch, R.: Energy Efficient Electric Motors. In: RIO 2002 - World Climate & Energy Event, pp. 6–11 (2002)

    Google Scholar 

  2. Kim, K., Parlos, A.G.: Induction Motor Fault Diagnosis Based on Neuropredictors and Wavelet Signal Processing. IEEE/ASME Transactions on Mechatronics 7, 201–219 (2002)

    Article  Google Scholar 

  3. Lima-Filho, A.C., Belo, F.A., Gomes, R.D.: Tests prove, self-powered, wireless, pump torquemeter. Oil and Gas Journal 106, 43–48 (2008)

    Google Scholar 

  4. Reich, R.B.: Rotary Transformer, U.S. Patent No. 4,412,198 (1983)

    Google Scholar 

  5. Buchele, W.F.: Strain-Gauge Brushless Torque-Meter, U.S. Patent No. 3,881,347 (1975)

    Google Scholar 

  6. Meng, Z., Liu, B.: Research on Torque Real Time Monitoring System of Rotary Machine. Chin. J. Sci. Instrum. 26, 38–39 (2005)

    Google Scholar 

  7. Lima-Filho, A.C., Belo, F.A., Santos, J.L.A., Anjos, E.G.: Experimental and theoretical study of a telemetric dynamic torque meter. Journal of the Brazilian Society of Mechanical Sciences and Engineering 32, 241–249 (2011)

    Article  Google Scholar 

  8. Hsu, J.S., Amin, A.M.A.: Torque calculations of current-source induction machines using the 1-2-0 coordinate system. IEEE Trans. on Industrial Electronics 37, 34–40 (1990)

    Article  Google Scholar 

  9. Hsu, J.S.: Capacitor effects on induction motors fed by quasi rectangular current sources. IEEE Trans. on Energy Conversion 7, 509–516 (1992)

    Article  Google Scholar 

  10. Lima-Filho, A.C., Gomes, R.D., Adissi, M.O., Silva, T.A.B., Belo, F.A., Spohn, M.A.: Embedded System Integrated Into a Wireless Sensor Network for Online Dynamic Torque and Efficiency Monitoring in Induction Motors. IEEE/ASME Trans. on Mechatronics 17, 404–414 (2012)

    Article  Google Scholar 

  11. Lee, T.H., Low, T.S., Tseng, K.J., Lim, H.K.: An Intelligent Indirect Dynamic Torque Sensor for Permanent Magnet Brushless DC Drives. IEEE Trans. on Industrial Electronics 41, 191–200 (1994)

    Article  Google Scholar 

  12. Lima-Filho, A.C., Belo, F.A., Santos, J.L.A., Anjos, E.G.: Self-Powered Telemetric Torque Meter. Journal of Dynamic Systems, Measurement, and Control 133, 1–7 (2011)

    Google Scholar 

  13. IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, IEEE Standard 112-1996 (2004)

    Google Scholar 

  14. Hsu, J.S., Kueck, J.D., Olszewski, M., Casada, D.A., Otaduy, P.J., Tolbert, L.M.: Comparison of Induction Motor Field Efficiency Evaluation Methods. IEEE Trans. on Industry Applications 34, 117–125 (1998)

    Article  Google Scholar 

  15. Gandhi, A., Corrigan, T., Parsa, L.: Recent Advances in Modeling and Online Detection of Stator Interturn Faults in Electrical Motors. IEEE Trans. on Industrial Electronics 58, 1564–1575 (2011)

    Article  Google Scholar 

  16. Antonino-Daviu, J., Aviyente, S., Strangas, E.: Scale Invariant Feature Extraction Algorithm for the Automatic Diagnosis of Rotor Asymmetries in Induction Motors. IEEE Trans. on Industrial Informatics 9, 100–108 (2012)

    Article  Google Scholar 

  17. Bouzida, A., Touhami, O., Ibtioen, R., Belouchrani, A., Fadel, M., Rezzoug, A.: Fault Diagnosis in Industrial Induction Machines Through Discrete Wavelet Transform. IEEE Trans. on Industrial Electronics 58, 4385–4395 (2011)

    Article  Google Scholar 

  18. Suratsayadee, K., Himanshu, J., Lee, W., Kwan, C.: Wireless health monitoring system for vibration detection of induction Motors. In: IEEE Industrial and Commercial Power Systems Technical Conference, pp. 1–6 (2010)

    Google Scholar 

  19. Zhang, H., Zanchetta, P., Bradley, K.J., Gerada, C.: A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests With an Accelerometer. IEEE Trans. on Industry Applications 46, 1341–1349 (2010)

    Article  Google Scholar 

  20. Pillay, P., Xu, Z.: Labview Implementation of Speed Detection for mains-fed motors using motor current signature analysis. IEEE Power Engineering Review 18, 47–48 (1998)

    Article  Google Scholar 

  21. Ghomson, W.T., Fenger, M.: Current Signature Analysis to Detect Induction Motor Faults. IEEE Industry Applications Magazine 7, 26–34 (2001)

    Article  Google Scholar 

  22. Schoen, R.R., Habetler, T.G., Kamran, F., Bartfield, R.G.: Motor Bearing Damage Detection Using Stator Current Monitoring. IEEE Transactions on Industry Applications 31, 1274–1279 (1995)

    Article  Google Scholar 

  23. Riera-Guasp, M., Pineda-Sanchez, M., Perez-Cruz, J., Puche-Panadero, R., Roger-Folch, J., Antonino-Daviu, J.A.: Diagnosis of Induction Motor Faults via Gabor Analysis of the Current in Transient Regime. IEEE Transactions on Instrumentation and Measurement 61, 1583–1596 (2012)

    Article  Google Scholar 

  24. Pineda-Sanchez, M., Riera-Guasp, M., Antonino-Daviu, J.A., Roger-Folch, J., Perez-Cruz, J., Puche-Panadero, R.: Diagnosis of Induction Motor Faults in the Fractional Fourier Domain. IEEE Transactions on Instrumentation and Measurement 59, 2065–2075 (2010)

    Article  Google Scholar 

  25. Torkaman, H., Afjei, E., Yadegari, P.: Static, Dynamic, and Mixed Eccentricity Faults Diagnosis in Switched Reluctance Motors Using Transient Finite Element Method and Experiments. IEEE Transactions on Magnetics 48, 2254–2264 (2012)

    Article  Google Scholar 

  26. Silva, A., Povinelli, R.J., Demerdash, N.A.O.: Rotor Bar Fault Monitoring Method Based on Analysis of Air-Gap Torques of Induction Motors. IEEE Transactions on Industrial Informatics 9, 2274–2283 (2013)

    Article  Google Scholar 

  27. Gyftakis, K.N., Spyropoulos, D.V., Kappatou, J.C., Mitronikas, E.D.: A Novel Approach for Broken Bar Fault Diagnosis in Induction Motors Through Torque Monitoring. IEEE Transactions on Energy Conversion 28, 267–277 (2013)

    Article  Google Scholar 

  28. Filippetti, F., Franceschini, G., Tassoni, C., Vas, P.: Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Transactions on Industrial Electronics 47, 994–1004 (2000)

    Article  Google Scholar 

  29. Su, H., Chong, K.-T.: Induction Machine Condition Monitoring Using Neural Network Modeling. IEEE Transactions on Industrial Electronics 54, 241–249 (2007)

    Article  Google Scholar 

  30. Seshadrinath, J., Singh, B., Panigrahi, B.K.: Investigation of Vibration Signatures for Multiple Fault Diagnosis in Variable Frequency Drives Using Complex Wavelets. IEEE Transactions on Power Electronics 29, 936–945 (2014)

    Article  Google Scholar 

  31. Betta, G., Liguori, C., Paolillo, A., Pietrosanto, A.: A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis. IEEE Transactions on Instrumentation and Measurement 51, 1316–1322 (2002)

    Article  Google Scholar 

  32. Washington State University-Energy Program, In-Service Motor Testing, research report E99-040 (1999)

    Google Scholar 

  33. Kueck, J.D., Olszewski, M., Casada, D.A., Hsu, J.S., Otaduy, P.J., Tolbert, L.M.: Assessment of methods for estimating motor efficiency and load under field conditions. Lockheed Martin Energy Research Corp., Oak Ridge, TN, Rep. ORNL/TM-13165 (1996)

    Google Scholar 

  34. Hsu, J.S., Scoggins, B.P.: Field test of motor efficiency and load changes through air-gap torque. IEEE Trans. on Energy Conversion 10, 471–477 (1995)

    Article  Google Scholar 

  35. Lu, B., Habetler, T.G., Harley, R.G.: A Nonintrusive and In-Service Motor-Efficiency Estimation Method Using Air-Gap Torque With Considerations of Condition Monitoring. IEEE Trans. on Industry Applications 44, 1666–1674 (2008)

    Article  Google Scholar 

  36. Lu, B., Gungor, V.C.: Online and Remote Motor Energy Monitoring and Fault Diagnostics Using Wireless Sensor Networks. IEEE Trans. on Industrial Electronics 56, 4651–4659 (2009)

    Article  Google Scholar 

  37. Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee Standards. Computer Communications 30, 1655–1695 (2007)

    Article  Google Scholar 

  38. Salvadori, F., Campos, M., Sausen, P.S., de Camargo, R.F., Gehrke, C.S., Rech, C., Spohn, M.A., Oliveira, A.C.: Monitoring in Industrial Systems Using Wireless Sensor Network With Dynamic Power Management. IEEE Trans. on Instrumentation and Measurement 58, 3104–3111 (2009)

    Article  Google Scholar 

  39. Willig, A.: Recent and Emerging Topics in Wireless Industrial Communications: A Selection. IEEE Trans. on Industrial Informatics 4, 102–124 (2008)

    Article  Google Scholar 

  40. Gungor, V.C., Hancke, G.P.: Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches. IEEE Trans. on Industrial Electronics 56, 4258–4265 (2009)

    Article  Google Scholar 

  41. Hou, L., Bergmann, N.W.: Novel Industrial Wireless Sensor Networks for Machine Condition Monitoring and Fault Diagnosis. IEEE Trans. on Instrumentation and Measurement 61, 2787–2798 (2012)

    Article  Google Scholar 

  42. Hou, L., Bergmann, N.W.: Induction motor condition monitoring using industrial wireless sensor networks. In: 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 49–54 (2010)

    Google Scholar 

  43. Hu, J.: The Application of Wireless Sensor Networks to In-Service Motor Monitoring and Energy Management. In: First International Conference on Intelligent Networks and Intelligent Systems, pp. 165–169 (2008)

    Google Scholar 

  44. Hu, J.: In-service motor monitoring and energy management system based on wireless sensor networks. In: International Conference on Electrical Machines and Systems, pp. 823–826 (2008)

    Google Scholar 

  45. Esfahani, E.T., Wang, S., Sundararajan, V.: Multisensor Wireless System for Eccentricity and Bearing Fault Detection in Induction Motors. IEEE/ASME Trans. on Mechatronics, 1–9 (2013)

    Google Scholar 

  46. Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: A Self-Assembly Modular Robot System. IEEE/ASME Trans. on Mechatronics 16, 745–757 (2011)

    Article  Google Scholar 

  47. Takahashi, J., Yamaguchi, T., Sekiyama, K., Fukuda, T.: Communication Timing Control and Topology Reconfiguration of a Sink-Free Meshed Sensor Network With Mobile Robots. IEEE/ASME Trans. on Mechatronics 14, 187–197 (2009)

    Article  Google Scholar 

  48. Santos, J.L.A., Araujo, R.C.C., Lima-Filho, A.C., Belo, F.A., Lima, J.A.G.: Telemetric System for Monitoring and Automation of Railroad Networks. Transportation Planning and Technology 34, 593–603 (2011)

    Article  Google Scholar 

  49. Nagornyy, A., Wallace, A.K., Jouanne, A.V.: Stray Load Losses Efficiency Connections. IEEE Industry App. Magazine 10, 62–69 (2004)

    Article  Google Scholar 

  50. Meng, Z., Liu, B.: Research on the Laser Doppler Torque Sensor. Journal of Physics: Conference Series 48, 202–206 (2006)

    Google Scholar 

  51. National Electrical Manufacturers Association (NEMA), Standards Publication ANSI/NEMA MG 1, Motors and Generators, Rosslyn, VA, USA (2009)

    Google Scholar 

  52. Lu, B., Habetler, T.G., Harley, R.G.: A survey of efficiency-estimation methods for in-service induction Motors. IEEE Trans. Industrial Applications 42, 924–933 (2006)

    Article  Google Scholar 

  53. Gulez, K., Adam, A.A., Pastaci, H.: A novel direct Torque Control Algorithm for IPMSM With Minimum Harmonics and Torque Ripples. IEEE/ASME Trans. on Mechatronics 12, 223–227 (2007)

    Article  Google Scholar 

  54. Ozturk, S.B., Toliyat, H.A.: Direct Torque and Indirect Flux Control of Brushless DC Motor. IEEE/ASME Trans. on Mechatronics 16, 351–360 (2011)

    Article  Google Scholar 

  55. Nguyen, Q.D., Ueno, S.: Modeling and Control of Salient-Pole Permanent Magnet Axial-Gap Self-Bearing Motor. IEEE/ASME Trans. on Mechatronics 16, 518–526 (2011)

    Article  Google Scholar 

  56. Akyildiz, I.F., Vuran, M.C.: Wireless Sensor Networks, 1st edn. Wiley (2010)

    Google Scholar 

  57. Verdone, R., Dardari, D., Mazzini, G., Conti, A.: Wireless Sensor and Actuator Networks: Technologies, Analises and Design, 1st edn. Elsevier (2007)

    Google Scholar 

  58. Fette, B., Aiello, R., Chandra, P., Dobkin, D., Bensky, D., Miron, D., Lide, D., Dowla, F., Olexa, R.: RF & Wireless Technologies: Know It All. Elsevier (2007)

    Google Scholar 

  59. Gomes, R.D., Adissi, M.O., Lima-Filho, A.C., Spohn, M.A., Belo, F.A.: On the Impact of Local Processing for Motor Monitoring Systems in Industrial Environments Using Wireless Sensor Networks. Int. Journal of Distributed Sensor Networks 2013, 1–14 (2013)

    Article  Google Scholar 

  60. Willig, A., Matheus, K., Wolisz, A.: Wireless Technology in Industrial Networks. Proceedings of the IEEE 93, 1130–1151 (2005)

    Article  Google Scholar 

  61. Tanghe, E., Joseph, W., Verloock, L., Martens, L., Capoen, H., Herwegen, K.V., Vantomme, W.: The Industrial Indoor Channel: Large-Scale and Temporal Fading at 900, 2400, and 5200 MHz. IEEE Trans. on Wireless Communications 7, 2740–2751 (2008)

    Article  Google Scholar 

  62. Stenumgaard, P., Chilo, J., Angskog, P.: Challenges and Conditions for Wireless Machine-to-Machine Communications in Industrial Environments. IEEE Communications Magazine 51, 187–192 (2013)

    Article  Google Scholar 

  63. Ferrer-Coll, J., Angskog, P., Chilo, J., Stenumgaard, P.: Characterisation of highly absorbent and highly reflective radio wave propagation environments in industrial applications. IET Communications 6, 2404–2412 (2012)

    Article  Google Scholar 

  64. Angskog, P., Karlsson, C., Coll, J.F., Chilo, J., Stenumgaard, P.: Sources of disturbances on wireless communication in industrial and factory environments. In: Asia-Pacific Symposium on Electromagnetic Compatibility, pp. 281–284 (2010)

    Google Scholar 

  65. Guo, W., Healy, W.M., Zhou, M.: An Experimental Study of Interference Impacts on ZigBee-based Wireless Communication Inside Buildings. In: Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, pp. 1982–1987 (2010)

    Google Scholar 

  66. Gomes, R.D., Spohn, M.A., Lima-Filho, A.C., Anjos, E.G., Belo, F.A.: Correlation between Spectral Occupancy and Packet Error Rate in IEEE 802.15.4-based Industrial Wireless Sensor Networks. IEEE Latin America Transactions 10, 1312–1318 (2012)

    Article  Google Scholar 

  67. Sikora, A., Groza, V.: Coexistence of IEEE 802.15.4 with other Systems in the 2.4 GHz ISM Band. In: Instrumentation and Measurement Technology Conference, pp. 1786–1791 (2005)

    Google Scholar 

  68. Akyildiz, I.F., Lee, W., Vuran, M.C., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks Journal 50, 2127–2159 (2006)

    Article  MATH  Google Scholar 

  69. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks, 1st edn. Wiley (2005)

    Google Scholar 

  70. Cao, L., Jiang, W., Zangh, Z.: Network wireless Meter Reading System Based on ZigBee Technology. In: IEEE Control and Decision Conference (2008)

    Google Scholar 

  71. Lee, J.: Performance Evaluation of IEEE 802.15.4 for Low-rate Wireless Personal Area Networks. IEEE Trans. on Consumer Electronics 52, 742–749 (2006)

    Article  Google Scholar 

  72. Cheong, P., Chang, K., Lai, Y., Ho, S., Sou, I., Tam, K.: A zigbee-based wireless sensor network node for ultraviolet detection of flame. IEEE Trans. on Industrial Electronics 58, 5271–5277 (2011)

    Article  Google Scholar 

  73. Hanzálek, Z., Jurcík, P.: Energy Efficient Scheduling for Cluster-Tree Wireless Sensor Networks With Time-Bounded Data Flows: Application to IEEE 802.15.4/ZigBee. IEEE Trans. on Industrial Informatics 6, 438–450 (2010)

    Article  Google Scholar 

  74. Caione, C., Brunelli, D., Benini, L.: Distributed Compressive Sampling for Lifetime Optimization in Dense Wireless Sensor Networks. IEEE Trans. on Industrial Informatics 8, 30–40 (2012)

    Article  Google Scholar 

  75. Ascariz, J.M.R., Boquete, L.: System for measuring power supply parameters with zigbee connectivity. In: IEEE Instrumentations Measurement Technology Conference, pp. 1–5 (2010)

    Google Scholar 

  76. Microchip - MiWi Protocol (2013), http://www.microchip.com/miwi/

  77. Song, J., Han, S., Mok, A.K., Chen, D.: Wirelesshart: Applying wireless technology in real-time industrial process control. In: IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 377–386 (2008)

    Google Scholar 

  78. Petersen, S., Carlsen, S.: Performance evaluation of wirelesshart for factory automation. In: IEEE Conference on Emerging Technologies & Factory Automation, pp. 1–9 (2009)

    Google Scholar 

  79. Frey, J., Lennvall, T.: Wireless Sensor Networks for Automation. In: Zurawski, R. (ed.) Networked Embedded Systems, vol. 27, pp. 1–27. CRC Press (2009)

    Google Scholar 

  80. ISA100, Wireless Systems for Automation (2013), http://www.isa.org/isa100

  81. Flammini, A., Marioli, D., Sisinni, E., Taroni, A.: Design and Implementation of a Wireless Fieldbus for Plastic Machineries. IEEE Trans. on Industrial Electronics 56, 747–755 (2009)

    Article  Google Scholar 

  82. Noergaard, T.: Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers, 1st edn. Elsevier (2005)

    Google Scholar 

  83. Wolf, W.: Computers as Components: Principles of Embedded Computing System Design, 1st edn. Elsevier (2008)

    Google Scholar 

  84. Simon, D.E.: An Embedded Software Primer, 1st edn. Pearson (1999)

    Google Scholar 

  85. Boano, C.A., Tsiftes, N., Voigt, T., Brown, J., Roedig, U.: The Impact of Temperature on Outdoor Industrial Sensornet Applications. IEEE Trans. on Industrial Informatics 6, 451–459 (2010)

    Article  Google Scholar 

  86. Bello, L., Toscano, E.: Coexistence Issues of Multiple Co-located IEEE 802.15.4/Zigbee Networks Running on Adjacent Radio Channels in Industrial Environments. IEEE Trans. on Industrial Informatics 5, 157–167 (2009)

    Article  Google Scholar 

  87. Tang, L., Wang, K., Huang, Y., Gu, F.: Channel Characterization and Link Quality Assessment of IEEE 802.15.4-compliant Radio for Factory Environments. IEEE Trans. on Industrial Informatics 3, 99–110 (2007)

    Article  Google Scholar 

  88. Gungor, V.C., Lu, B., Hancke, G.P.: Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans. on Industrial Electronics 57, 3557–3564 (2010)

    Article  Google Scholar 

  89. Akerberg, J., Gidlund, M., Bjorkman, M.: Future Research Challenges in Wireless Wensor and Actuator Networks Targeting Industrial Automation. In: IEEE International Conference on Industrial Informatics, pp. 410–415 (2011)

    Google Scholar 

  90. Hu, J., Wu, B.: New Integration Algorithms for Estimating Motor Flux Over a Wide Speed Range. IEEE Trans. on Power Electronics 13, 969–977 (1998)

    Article  Google Scholar 

  91. Zerbo, M., Sicard, P., Ba-razzouk, A.: Accurate Adaptative Integration Algorithms for Induction Machine Drive Over a Wide Speed Range. In: IEEE International Conference on Electric Machines and Drives, pp. 1082–1088 (2005)

    Google Scholar 

  92. Lee, S.B., Habetler, T.G., Harley, R.G., Gritter, D.J.: An Evaluation of Model-Based Stator Resistance Estimation for Induction Motor Stator Winding Temperature Monitoring. IEEE Transactions on Energy Conversion 17, 7–15 (2002)

    Article  Google Scholar 

  93. Habetler, T.G., Profumo, F., Griva, G., Pastorelli, M., Bettini, A.: Stator Resistance Tuning in a Stator-Flux Field-Oriented Drive Using an Instantaneous Hybrid Flux Estimator. IEEE Trans. Power Electronics 13, 125–133 (1998)

    Article  Google Scholar 

  94. Jacobina, C.B., Filho, J.E.C., Lima, A.M.N.: On-line Estimation of the Stator Resistance of Induction Machines based on Zero Sequence Model. IEEE Trans. on Power Electronics 15, 346–353 (2000)

    Article  Google Scholar 

  95. Bharadwaj, R.M., Parlos, A.G.: Neural Speed Filtering for Induction Motors with Anomalies and Incipient Faults. IEEE/ASME Trans. on Mechatronics. 9, 679–688 (2004)

    Article  Google Scholar 

  96. Ishida, M., Iwata, K.: Steady-state characteristics of a torque and speed control system of an induction motor utilizing rotor slot harmonics for slip frequency sensing. IEEE Trans. on Power Electronics 2, 257–263 (1987)

    Article  Google Scholar 

  97. Ferrah, A., Bradley, K., Asher, G.: Sensorless speed detection of inverter fed induction motors using rotor slot harmonics and fast Fourier transform. In: IEEE-PESC Conf. Rec., vol. 1, pp. 279–286 (1992)

    Google Scholar 

  98. Hurst, K.D., Habetler, T.G.: Sensorless speed measurement using current harmonic spectral estimation in induction machine drivers. IEEE Trans. on Power Electronics 11, 66–73 (1996)

    Article  Google Scholar 

  99. Airview (2013), http://www.ubnt.com/airview

  100. Huang, J., Xing, G., Zhou, G., Zhou, R.: Beyond Co-existence: Exploiting WiFi White Space for ZigBee Performance Assurance. In: IEEE International Conference on Network Protocols, pp. 305–314 (2010)

    Google Scholar 

  101. Liang, C., Priyantha, N., Liu, J., Terzis, A.: Surviving Wi-Fi Interference in Low Power ZigBee Networks. In: ACM Conference on Embedded Networked Sensor Systems, pp. 309–322 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruan D. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomes, R.D., Adissi, M.O., da Silva, T.A.B., Filho, A.C.L., Spohn, M.A., Belo, F.A. (2015). Application of Wireless Sensor Networks Technology for Induction Motor Monitoring in Industrial Environments. In: Leung, H., Chandra Mukhopadhyay, S. (eds) Intelligent Environmental Sensing. Smart Sensors, Measurement and Instrumentation, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-12892-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12892-4_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12891-7

  • Online ISBN: 978-3-319-12892-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics