Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 705 Accesses

Abstract

This chapter presents the methodology necessary for the construction of evidence-based probability models for pedestrian injury severity in frontal vehicle crashes using empirical, in-depth accident data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. German In-Depth Accident Study: Unfalldatenbank 07.1999-12.2008. Dresden, Hannover, 31.12.2008.

    Google Scholar 

  2. UMTRI (2005). 1994–1998 NASS pedestrian crash data study (PCDS) codebook. Version 03Mar01. UMTRI Transportation Data Center.

    Google Scholar 

  3. Chauvel, C., Page, Y., Fildes, B., & Lahausse, J. (2013). Automatic emergency braking for pedestrians effective target population and expected safety benefits. In 23rd international technical conference on the enhanced safety of vehicles (ESV 2013) No. 13–0008.

    Google Scholar 

  4. Hannawald, L., & Kauer, F. (2004). Equal effectiveness study on pedestrian protection. Dresden: Technische Universität Dresden.

    Google Scholar 

  5. Ressle, A., Schramm, S., & Kölzow, T. (2010). Generierung von Verletzungsrisikofunktionen für Fußgängerkollisionen. In Crash Tech 2010—Fahrzeugsicherheit 2020.

    Google Scholar 

  6. Rosen, E., & Sander, U. (2009). Pedestrian fatality risk as a function of car impact speed. Accident Analysis and Prevention, 41, 536–542.

    Article  Google Scholar 

  7. Tefft, B. (2011). Impact speed and a pedestrian’s risk of severe injury or death. Report, AAA Foundation for Traffic Safety.

    Google Scholar 

  8. AAAM (1990). The abbreviated injury scale (1990 revision). Association for the Advancement of Automotive Medicine.

    Google Scholar 

  9. States, J. D. (1969). Abbreviated and the comprehensive research injury scales. In Proceedings of thirteenth Stapp Car Crash conference, December 2–4, 1969 (Vol. 13, pp. 282–294). New York: Society of Automotive Engineers.

    Google Scholar 

  10. States, J. D., & Huelke, D. F. (1980). The abbreviated injury scale. 1980 revision. Des Plaines: American Association for Automotive Medicine (AAAM).

    Google Scholar 

  11. The Abbreviated Injury Scale, Update (2008). Des Plaines, IL: American Association for Automotive Medicine (AAAM).

    Google Scholar 

  12. Codebook GIDAS2009. GIDAS, 2009.

    Google Scholar 

  13. Otte, D., Haasper, C., & Krettek, C. (2006 October). Die neue abbreviated injury scale (AIS) 2005—Nutzen einer standardisierten Klassifikation der Verletzungsschwere. Verkehrsunfall und Fahrzeugtechnik (VKU) (pp. 261–268).

    Google Scholar 

  14. Kramer, F. (Ed.). (2006). Passive Sicherheit von Kraftfahrzeugen. Wiesbaden: Friedr. Vieweg & Sohn Verlag.

    Google Scholar 

  15. Baker, S. P., & O’Neill, B. (1976). The injury severity score: An update. The Journal of Trauma, 16(11), 882–885.

    Google Scholar 

  16. Baker, S. P., O’Neill, B., Haddon, W. J., & Long, W. B. (1974). The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. The Journal of Trauma, 14(3), 187–196.

    Google Scholar 

  17. Nogueira, L. S., Domingues, C. A., Campos, M. A., & Ten Sousa, R. M. C. (2008). Years of new injury severity score (NISS): Is it a possible change? Rev Latino-am Enfermagem, 16(2), 314–319.

    Google Scholar 

  18. Stevenson, M., Segui-Gomez, M., Lescohier, I., Di Scala, C., & McDonald-Smith, G. (2001). An overview of the injury severity score and the new injury severity score. Injury Prevention, 7, 10–13.

    Article  Google Scholar 

  19. Henary, B. Y., Crandall, J., Bhalla, K., Mock, C. N., & Roudsari, B. S. (2003). Child and adult pedestrian impact: The influence of vehicle type on injury severity. In 47th annual conference of the association for the advancement of automotive medicine.

    Google Scholar 

  20. Henary, B. Y., Ivarsson, B. J., & Crandall, J. R. (2006). The influence of age on the morbidity and mortality of pedestrian victims. Traffic Injury Prevention, 7, 182–190.

    Google Scholar 

  21. Prange, M., Heller, M., Watson, H., Iyer, M., Ivarsson, B. J., & Fisher, J. (2010). Age effects on injury patterns in pedestrian crashes. SAE International Journal of Passenger Cars—Mechanical Systems, 3(1), 789–820.

    Google Scholar 

  22. GIDAS German In-Depth Accident Study (2010, December 22). http://www.gidas.org/files/GIDAS_eng.pdf.

  23. Ebner, A., Samaha, R. R., Scullion, P., & Helmer, T. (2010). Identifying and analyzing reference scenarios for the development and evaluation of preventive pedestrian safety systems. In Proceedings of the 17th ITS world congress.

    Google Scholar 

  24. Ebner, A., Samaha, R. R., Scullion, P., & Helmer, T. (2010). Methodology for the development and evaluation of active safety systems using reference scenarios: Application to preventive pedestrian safety. In Proceedings of the international research council on biomechanics of injury (IRCOBI) (pp. 155–168).

    Google Scholar 

  25. Isenberg, R. A., Chidester, A. B., & Mavros, S. (1998). Update on the pedestrian crash data study. In 16th international technical conference on the enhanced safety of vehicles (ESV).

    Google Scholar 

  26. Jarrett, K. J., & Saul, R. A. (1998). Pedestrian injury-analysis of the PCDS field collision data. In 16th international technical conference on the enhanced safety of vehicles (ESV 1998).

    Google Scholar 

  27. Hakkert, A. S., Gitelman, V., & Vis, M. A. (2007). Road safety performance indicators: Theory. Deliverable D3.6, EU FP6 project SafetyNet.

    Google Scholar 

  28. Jaccard, J. (2001). Interaction effects in logistic regression (pp. 07–135). Thousand Oaks, CA: Sage University Papers Series on Quantitative Applications in the Social Sciences.

    Google Scholar 

  29. Statistisches, Bundesamt. (2010). Mikrozensus—Fragen zur Gesundheit—Körpermaße der Bevölkerung—2009. Wiesbaden: Statistisches Bundesamt.

    Google Scholar 

  30. Stolzenberg, H., Kahl, H., & Bergmann, K. (2007). Körpermaße bei Kindern und Jugendlichen in Deutschland. Bundesgesundheitsblatt—Gesundheitsforschung—Gesundheitsschutz, 50, 659–669. doi:10.1007/s00103-007-0227-5.

    Google Scholar 

  31. Liers, H., & Hannawald, L. (2008). Klassifizierung von Fahrzeugfrontkonturen in Fußgängerfrontalunfällen. Verkehrsunfallforschung an der TU Dresden GmbH: Abschlussbericht.

    Google Scholar 

  32. Ogden, C. L., Fryar, C. D., Carroll, M. D., & Flegal, K. M. (2004). Mean body weight, height, and body mass index, United States 1960–2002. Advance data from vital and health statistics 347. Hyattsville, Maryland: National Center for Health Statistics.

    Google Scholar 

  33. Clauß, G., Finze, F. -R., & Partzsch, L. (2011). Grundlagen der statistik (6th ed.). Frankfurt: Verlag Harri Deutsch.

    Google Scholar 

  34. Salkind, N. (2011). Statistics for people who (think they) hate statistics (4th ed.). Munich: SAGE Publications Inc.

    Google Scholar 

  35. Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler (7th ed.). Berlin: Springer.

    Google Scholar 

  36. Degen, H., & Lorscheid, P. (2012). Statistik-Lehrbuch (4th ed.). Munich: Oldenbourg Verlag München.

    Google Scholar 

  37. Kleinbaum, D., & Klein, M. (2010). Logistic regression. A self learning text. Statistics for biology and health. Berlin: Springer.

    Google Scholar 

  38. Tabachnick, B., & Fidell, L. (2013). Using multivariate statistics (6th ed.). London: Pearson.

    Google Scholar 

  39. Pampel, F. (2000). Logistic regression: A primer (pp. 07–132). Thousand Oaks, CA: Sage University Papers Series on Quantitative Applications in the Social Sciences.

    Google Scholar 

  40. Menard, S. (2002). Applied logistic regression analysis (2nd ed.). Thousand Oaks: SAGE Publications Inc.

    Google Scholar 

  41. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2008). Multivariate analysemethoden (12th ed.). Berlin: Springer.

    Google Scholar 

  42. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  43. Findley, D. (1991). Counterexamples to parsimony and BIC. Annals of the Institute of Statistical Mathematics, 43(3), 505–514.

    Google Scholar 

  44. Kohavi, R. A. (1995). Study of cross-validation and bootstrap for accuracy estimation and model selection. In International joint conference on artificial intelligence (pp. 1137–1143).

    Google Scholar 

  45. Schramm, S. (2011). Methode zur Berechnung der Feldeffektivität integraler Fußgängerschutzsysteme. Dissertation, Technische Universität München.

    Google Scholar 

  46. Dahdah, S. (2008). Modeling an infrastructure safety rating for vulnerable road users in developing countries. Dissertation, The George Washington University.

    Google Scholar 

  47. Kerrigan, J. R., Rudd, R., Subit, D., Untaroiu, C. D., & Crandall, J. R. (2008). Pedestrian lower extremity response and injury: A small sedan vs. a large SUV. SAE Technical Paper, 2008–01-1245.

    Google Scholar 

  48. Lefler, D. E., & Gabler, H. C. (2001). The emerging threat of light truck impacts with pedestrians. SAE Technical Paper, 2001-06-0082.

    Google Scholar 

  49. Longhitano, D., Henary, B., Bhalla, K., Ivarsson, J., & Crandall, J. (2005). Influence of vehicle body type on pedestrian injury distribution. SAE Technical Paper, 2005-01-1876.

    Google Scholar 

  50. Roudsari, B. S., Mock, C. N., & Kaufman, R. (2005). An evaluation of the association between vehicle type and the source and severity of pedestrian injuries. Traffic Injury Prevention, 6, 185–192.

    Google Scholar 

  51. Simms, C. K., & Wood, D. P. (2006). Pedestrian risk from cars and sport utility vehicles—a comparative analytical study. In Proceedings of the Institution of Mechanical Engineers (Vol. 220, pp. 1085–1100).

    Google Scholar 

  52. Fitzharris, M., & Fildes, B. (2007). Analysis of the potential crash reduction benefits of electronic brake assist, early warning systems, and the combined effects for pedestrians. Melbourne, Australia: Monash University Accident Research Centre for the Automotive Collaborative Research Consortium.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Helmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helmer, T. (2015). Probabilistic Modeling of Pedestrian Injury Severity. In: Development of a Methodology for the Evaluation of Active Safety using the Example of Preventive Pedestrian Protection. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12889-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12889-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12888-7

  • Online ISBN: 978-3-319-12889-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics