Skip to main content

High-Order, Linear and Non-linear Residual Distribution Schemes for Steady Compressible RANS Equations

  • Chapter
IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 128))

  • 2002 Accesses

Abstract

Linear and non-linear Residual Distribution schemes for the discretization of the RANS equations are presented. Non-linear schemes are particularly suited for the discretization of transonic flows due to their capacity to give a monotone approximation of discontinuous solutions without the necessity to add artificial viscosity. A non-linear LUSGS solver is considered to construct a robust implicit solver for the discretization of two and three-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abgrall, R.: Essentially non-oscillatory residual distribution schemes for hyperbolic problems. Journal of Computational Physics 214, 773–808 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R.: A residual distribution method using discontinuous elements for the computation of possibly non smooth flows. Advances in Applied Mathematics and Mechanics 2, 32–44 (2010)

    MathSciNet  Google Scholar 

  3. Abgrall, R., De Santis, D.: Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible navier-stokes equations. Journal of Computational Physics (2013) (submitted)

    Google Scholar 

  4. Abgrall, R., De Santis, D.: High order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids. SIAM Journal on Scientific Computing (2014) (accepted)

    Google Scholar 

  5. Abgrall, R., Larat, A., Ricchiuto, M.: Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. Journal of Computational Physics 230, 4103–4136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abgrall, R., Roe, P.L.: High-order fluctuation schemes on triangular meshes. Journal of Scientific Computing 19(3), 3–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Santis, D.: Development of a high order residual distribution method for navier Stokes and RANS equations. PhD thesis, University of Bordeaux (2013)

    Google Scholar 

  8. Moro, D., Nguyen, N.C., Peraire, J.: Navier-Stokes solution using hybridizable discontinuous Galerkin methods. In: 20th AIAA Computational Fluid Dynamics Conference. AIAA Paper 2011-3407 (2011)

    Google Scholar 

  9. Ni, R.H.: A multiple grid scheme for solving the Euler equations. In: 5th Computational Fluid Dynamics Conference, pp. 257–264 (1981)

    Google Scholar 

  10. Parsani, M., Ghorbaniasl, G., Lacor, C., Turkel, E.: An implicit high-order spectral difference approach for large eddy simulation. Journal of Computational Physics 229(14), 5373–5393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schröder, A., Konrath, R., Klein, C.: PSP and PIV investigations on the VFE-2 configuration in sub- and transonic flow. AIAA-Paper 2008-379 (2008)

    Google Scholar 

  12. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers (1998)

    Google Scholar 

  13. Sun, Y., Wang, Z.J., Lun, Y.: Efficient implicit non-linear lu-sgs approach for compressible flow computation using high-order spectral difference method. Communications in Computational Physics 5(2-4), 760–778 (2009)

    MathSciNet  Google Scholar 

  14. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering 24(2), 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering 33(7), 1365–1382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abgrall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abgrall, R., De Santis, D. (2015). High-Order, Linear and Non-linear Residual Distribution Schemes for Steady Compressible RANS Equations. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-12886-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12886-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12885-6

  • Online ISBN: 978-3-319-12886-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics