Skip to main content

Unit Commitment Optimization Using Gradient-Genetic Algorithm and Fuzzy Logic Approaches

  • Chapter
  • First Online:
Complex System Modelling and Control Through Intelligent Soft Computations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

The development of the industry and the gradual increase of the population are the main factors for which the consumption of electricity increases. In order to establish a good exploitation of the electrical grid, it is necessary to solve technical and economic problems. This can only be done through the resolution of unit commitment problem (UCP). The decisions are which units to commit at each time period and at what level to generate power meeting the electricity demand. Therefore, in a robust unit commitment problem, first stage commitment decisions are made to anticipate the worst case realization of demand uncertainty and minimize operation cost under such scenarios. Unit Commitment Problem allows optimizing the combination of the production units’ states and determining their production planning in order to satisfy the expected consumption with minimal cost during a specified period which varies usually from 24 h to 1 week. However, each production unit has some constraints that make this problem complex, combinatorial and nonlinear. In this chapter, we have proposed two strategies applied to an IEEE electrical network 14 buses to solve the UCP in general and in particular to find the optimized combination scheduling of the produced power for each unit production. The First strategy is based on a hybrid optimization method, Gradient-Genetic algorithm, and the second one relies on a Fuzzy logic approach. Throughout these two strategies, we arrived to develop an optimized scheduling plan of the generated power allowing a better exploitation of the production cost in order to bring the total operating cost to possible minimum when it’s subjected to a series of constraints. A comparison was made to test the performances of the proposed strategies and to prove their effectiveness in solving Unit Commitment problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassi, R., & Chebbi, S. (2012). Energy management strategy for a grid-connected wind-solar hybrid system with battery storage: Policy for optimizing conventional energy generation. International Review of Electrical Engineering, 7(2), 3979–3990.

    Google Scholar 

  • Abbassi, R., Marrouchi, S., Moez, B. H., Chebbi, S., & Houda, J. (2012). Voltage control strategy of an electrical network by the integration of the UPFC compensator. International Review on Modelling and Simulations (I.RE.MO.S), 5(1), 380–384.

    Google Scholar 

  • Attaviriyanupap, P., Kita, H., Tanaka, E., & Hasegawa, J. (2002). A new profit-based unit commitment considering power and reserve generating. In The 2002 IEEE-PES Winter Meeting (pp. 6–11). New York. January 27–31 2002. doi: 10.1109/PESW.2002.985227.

  • Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications (IJFSA), 2(4), 1–28.

    Article  MathSciNet  Google Scholar 

  • Azar, A. T. (2010a). Fuzzy systems. Vienna, Austria: IN-TECH. ISBN 978-953-7619-92-3. 3.

    Google Scholar 

  • Azar, A. T. (2010b). Adaptive neuro-fuzzy systems. In A. T. Azar (Ed.), Fuzzy systems. Vienna, Austria: IN-TECH. ISBN 978-953-7619-92-3.

    Google Scholar 

  • Cai, C. H., & Cai, Y. Y. (1997). Optimization of unit commitment by genetic algorithm. Power System Technology, 21(1), 44–47.

    Google Scholar 

  • Cheng, C. P., Liu, C. W., & Liu, C. C. (2002). Unit commitment by annealing-genetic algorithm. Electrical Power and Energy Systems, 24(2), 149–158.

    Article  Google Scholar 

  • Damousis, I. G., Bakirtzis, A. G., & Dokopoulos, P. S. (2004). A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power systems, 19(2), 1165–1172.

    Article  Google Scholar 

  • Dieu, V. N., & Ongsakul, W. (2007). Improved merit order and augmented lagrange hopfield network for unit commitment. IET Generation, Transmission and Distribution, 1(4), 548–556.

    Article  Google Scholar 

  • Dekrajangpetch, S., Sheble, G. B., & Conejo, A. J. (1999). Auction implementation problems using lagrangian relaxation. IEEE Transactions on Power Systems, 14(1), 82–88.

    Article  Google Scholar 

  • Guan, X., Luh, P. B., Yan, H., & Amalfi, J. A. (1992). An optimization-based method for unit commitment. Electric power and energy systems, 14(1), 9–17.

    Article  Google Scholar 

  • Grey, A., & Sekar, A. (2008). Unified solution of security-constrained unit commitment problem using a linear programming methodology. IET Generation, Transmission and Distribution, 2(6), 856–867.

    Article  Google Scholar 

  • Hong, Y. Y., & Li, C. (2002). Genetic algorithm based economic dispatch for cogeneration units considering multiplant multibuyer wheeling. IEEE Transactions on Power Systems, 17(1), 134–140.

    Article  Google Scholar 

  • Juste, K. A., Kita, H., Tanaka, E., & Hasegawa, J. (1999). An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems, 14(4), 1452–1459.

    Article  Google Scholar 

  • Kazarlis, S. A., Bakirtzis, A. G., & Petridis, V. (1996). A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems, 11(1), 83–92.

    Article  Google Scholar 

  • Kohonen, T. (1998). An introduction to neural computing. Neural Network Journal, 1(1), 3–16.

    Article  Google Scholar 

  • Kurban, M., & Filik, U. B. (2009). A comparative study of three different mathematical methods for solving the unit commitment problem. Mathematical Problems in Engineering, 2009(1), 1–13, (368024, Hindawi publishing corporation).

    Google Scholar 

  • Lin, F. T., Kao, C. Y., & Hsu, C. C. (1993). Applying the genetic approach to simulated annealing in solving some NP-hard problems. IEEE Transactions on Power Systems, Man, and Cybernetics, 23(6), 1752–1767.

    Article  Google Scholar 

  • Maifeld, T. T., & Sheble, G. B. (1996). Genetic-based unit commitment algorithm. IEEE Transactions on Power Systems, 11(3), 1359–1370.

    Article  Google Scholar 

  • Mantawy, A. H., AbdelMagid, Y. L., & Selim, S. Z. (1998). A simulated annealing algorithm for unit commitment. IEEE Transactions on Power System, 13(1), 197–204.

    Article  Google Scholar 

  • Marrouchi, S., & Chebbi, S. (2013). Combined use of genetic algorithms and gradient optimization methods for unit commitment problem resolution. Wulfenia Journal, 20(8), 357–369.

    Google Scholar 

  • Merlin, A., & Sandrin, P. (1983). A new method for unit commitment at Electricite De France. IEEE Transactions on Power Apparatus and Systems, 102(5), 1218–1225.

    Article  Google Scholar 

  • Moez, B. H., Sahbi, M., Souad, C., Houda, J., & Rabeh, A. (2011). Preventive and curative strategies based on fuzzy logic for voltage stabilization of an electrical network. International Review on Modeling and Simulation (I.RE.MO.S), 4(6), 3201–3207.

    Google Scholar 

  • Ouyang, Z., & Shahidehpour, S. M. (1991). An intelligent dynamic programming for unit commitment application. IEEE Transactions on Power Systems, 6(3), 1203–1209.

    Article  Google Scholar 

  • Padhy, N. P. (2001). Unit commitment using hybrid models: A comparative study for dynamic programming, expert systems, fuzzy system and genetic algorithms. International Journal of Electrical Power and Energy Systems, 23(8), 827–836.

    Article  Google Scholar 

  • Rajan, C. C. A., & Mohan, M. R. (2004). An evolutionary programming-based Tabu search method for solving the unit commitment problem. IEEE Transactions on Power Systems, 19(1), 577–585.

    Article  Google Scholar 

  • Rajan, C. C. A., Mohan, M. R., & Manivannan, K. (2002). Refined simulated annealing method for solving unit commitment problem, the 2002 neural networks, 2002. In IJCNN ‘02. Proceedings of the 2002 International Joint Conference on May 12-17 2002 (pp. 333–338). Honolulu, HI. doi: 10.1109 /IJCNN.2002.1005493.

    Google Scholar 

  • Saber, A. Y., Senjyu, T., Yona, A., Urasaki, N., & Funabashi, T. (2007). Fuzzy unit commitment solution-A novel twofold simulated annealing approach. Electric Power Systems Research, 77(12), 1699–1712.

    Article  Google Scholar 

  • Sasaki, H., Watanabe, M., Kubokawa, J., Yorino, N., & Yokoyama, R. (1992). A solution method of unit commitment by artificial neural networks. IEEE Transactions on Power Systems, 7(3), 974–981.

    Article  Google Scholar 

  • Snyder, W. L., Powell, H. D., & Rayburn, J. C. (1987). Dynamic programming approach to unit commitment. IEEE Transactions on Power Systems, 2(2), 339–350.

    Article  Google Scholar 

  • Sudhakaran, M., Ajay, D., & Vimal-Raj, P. (2010). Integrating genetic algorithms and tabu search for unit commitment problem. International Journal of Engineering, Science and Technology, 2(1), 57–69.

    Article  Google Scholar 

  • Victoire, T. A. A., & Jeyakumar, A. E. (2005). Unit commitment by a tabu-search-based hybrid-optimization technique. IEEE Proceedings Generation Transmission and Distribution, 152(4), 563–574.

    Article  Google Scholar 

  • Wei, P., & Li, N. H. (1999). Daily generation scheduling based on genetic algorithm. Automation of Electric Power Systems, 23(3), 23–27.

    Google Scholar 

  • Wood, A. J., & Woolenberg, B. F. (1996). Power generation operation and control (2nd ed.). New York: Wiley.

    Google Scholar 

  • Wu, Y. G., Ho, C., & Wang, D. Y. (2000). A diploid genetic approach to short-term scheduling of hydro-thermal system. IEEE Transactions on Power System, 15(4), 1268–1274.

    Article  Google Scholar 

  • Yingvivatanapong, C. (2006, May). Multi-area unit commitment and economic dispatch with market operation components, PhD discussion, University of Texas, Arlington.

    Google Scholar 

  • Zhao, B., Guo, C. X., Bai, B. R., & Cao, Y. J. (2006). An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power and Energy Systems, 28(7), 482–490.

    Article  Google Scholar 

  • Zhuang, F., & Galiana, F. D. (1988). Towards a more rigorous and practical unit commitment by Lagrangian relaxation. IEEE Transactions on Power Systems, 3(2), 763–772.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahbi Marrouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marrouchi, S., Chebbi, S. (2015). Unit Commitment Optimization Using Gradient-Genetic Algorithm and Fuzzy Logic Approaches. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics