Skip to main content

Secondary and Tertiary Structure Prediction of Proteins: A Bioinformatic Approach

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

Correct prediction of secondary and tertiary structure of proteins is one of the major challenges in bioinformatics/computational biological research. Predicting the correct secondary structure is the key to predict a good/satisfactory tertiary structure of the protein which not only helps in prediction of protein function but also in prediction of sub-cellular localization. This chapter aims to explain the different algorithms and methodologies, which are used in secondary structure prediction. Similarly, tertiary structure prediction has also emerged as one of developing areas of bioinformatics/computational biological research owing to the large gap between the available number of protein sequences and the known experimentally solved structures. Because of time and cost intensive experimental methods, experimentally determined structures are not available for vast majority of the available protein sequences present in public domain databases. The primary aim of this chapter is to offer a detailed conceptual insight to the algorithms used for protein secondary and tertiary structure prediction. This chapter systematically illustrates flowchart for selecting the most accurate prediction algorithm among different categories for the target sequence against three categories of tertiary structure prediction methods. Out of the three methods, homology modeling which is considered as most reliable method is discussed in detail followed by strengths and limitations for each of these categories. This chapter also explains different practical and conceptual problems, obstructing the high accuracy of the protein structure in each of the steps for all the three methods of tertiary structure prediction. The popular hybrid methodologies which further club together a number of features such as structural alignments, solvent accessibility and secondary structure information are also discussed. Moreover, this chapter elucidates about the Meta-servers that generate consensus result from many servers to build a protein model of high accuracy. Lastly, scope for further research in order to bridge existing gaps and for developing better secondary and tertiary structure prediction algorithms is also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PSS:

Protein secondary structure

SSE:

Secondary structure elements

UniProtKB:

UNIversal PROTein resource KnowledgeBase

TrEMBL:

Translated European molecular biology laboratory

PDB:

Protein data bank

NMR:

Nuclear magnetic resonance

FM:

Free modelling

TBM:

Template based modelling

GOR:

Garnier-Osguthorpe-Robson

NNSSP:

Nearest-neighbor secondary structure prediction

ANN:

Artificial neural networks

SVM:

Support vector machines

SOV:

Segment overlap

CASP:

Critical assessment of protein structure prediction

EVA:

EValuation of automatic protein structure prediction

FR:

Fold recognition

BLAST:

Basic local alignment search tool

PSI-BLAST:

Position specific iterative basic local alignment search tool

MEGA:

Molecular evolutionary genetics analysis

PHYLIP:

PHYLogeny inference package

GROMACS:

GROningen machine for chemical simulations

AMBER:

Assisted model building and energy refinement

CHARMM:

Chemistry at HARvard molecular mechanics

GDT:

Global displacement test

PROCHECK:

PROtein structure CHECK

PROSA:

PROtein structure analysis

MAT:

MonoAmine transporters

HMM:

Hidden Markov model

CPU:

Central processing unit

RPS-BLAST:

Reversed position specific BLAST

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    Article  Google Scholar 

  • Arnold, K., Kiefer, F., Kopp, J., Battey, J. N., Podvinec, M., Westbrook, J. D., et al. (2009). The protein model portal. Journal of Structural and Functional Genomics, 10(1), 1–8.

    Article  Google Scholar 

  • Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294(5540), 93–96.

    Article  Google Scholar 

  • Bates, P. A., Kelley, L. A., MacCallum, R. M., & Sternberg, M. J. E. (2001). Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins: Structure, Function, and Bioinformatics, 45(5), 39–46.

    Article  Google Scholar 

  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510–W514.

    Article  Google Scholar 

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  Google Scholar 

  • Bettella, F., Rasinski, D., & Knapp, E. W. (2012). Protein secondary structure prediction with SPARROW. Journal of Chemical Information and Modeling, 52(2), 45–56.

    Article  Google Scholar 

  • Bhattacharya, D., & Cheng, J. (2013). 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins: Structure, Function, and Bioinformatics, 81(1), 119–131.

    Article  Google Scholar 

  • Boissel, J. P., Lee, W. R., Presnell, S. R., Cohen, F. E., & Bunn, H. F. (1993). Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure. Journal of Biological Chemistry, 268(21), 15983–15993.

    Google Scholar 

  • Bowie, J., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170.

    Article  Google Scholar 

  • Bradley, P., Misura, K. M. S., & Baker, D. (2005). Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742), 1868–1871.

    Article  Google Scholar 

  • Chandonia, J.- M., & Karplus, M. (1995). Neural networks for secondary structure and structural class predictions. Protein Science, 4(2), 275–285.

    Article  Google Scholar 

  • Cheng, J., Li, J., Wang, Z., Eickholt, J., & Deng, X. (2012). The MULTICOM toolbox for protein structure prediction. BMC Bioinformatics, 13, 65.

    Article  Google Scholar 

  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–W76.

    Article  Google Scholar 

  • Chou, P. Y., & Fasman, G. D. (1974). Prediction of protein conformation. Biochemistry, 13(2), 222–245.

    Article  Google Scholar 

  • Cole, C., Barber, J. D., & Barton, G. J. (2008). The Jpred3 secondary structure prediction server. Nucleic Acids Research, 36(Web Server issue), W197–W201.

    Article  Google Scholar 

  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Science, 2(9), 1511–1519.

    Article  Google Scholar 

  • Combet, C., Jambon, M., Deléage, G., & Geourjon, C. (2002). Geno3D: Automatic comparative molecular modelling of protein. Bioinformatics, 18(1), 213–214.

    Article  Google Scholar 

  • Do, C. B., Mahabhashyam, M. S. P., Brudno, M., & Batzoglou, S. (2005). ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Research, 15(2), 330–340.

    Article  Google Scholar 

  • Drew, K., Winters, P., Butterfoss, G. L., Berstis, V., Uplinger, K., Armstrong, J., et al. (2011). The Proteome folding project: Proteome-scale prediction of structure and function. Genome Research, 21(11), 1981–1994.

    Article  Google Scholar 

  • Eyrich, V. A., Martı́-Renom, M. A., Przybylski, D., Madhusudhan, M. S., Fiser, A., Pazos, F., Valencia, A., Sali, A., & Rost, B. (2001). EVA: Continuous automatic evaluation of protein structure prediction servers. Bioinformatics, 17(12), 1242–1243.

    Google Scholar 

  • Fernandez-Fuentes, N., Madrid-Aliste, C. J., Rai, B. K., Fajardo, J. E., & Fiser, A. (2007). M4T: A comparative protein structure modeling server. Nucleic Acids Research, 35(Web Server issue), W363–W368.

    Article  Google Scholar 

  • Fischer, D. (2003). 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor. Proteins: Structure, Function, and Bioinformatics, 51(3), 434–441.

    Article  Google Scholar 

  • Fiser, A., Do, R. K. G., & Šali, A. (2000). Modeling of loops in protein structures. Protein Science, 9(9), 1753–1773.

    Article  Google Scholar 

  • Floudas, C. A. (2007). Computational methods in protein structure prediction. Biotechnology and Bioengineering, 97(2), 207–213.

    Article  Google Scholar 

  • Floudas, C. A., Fung, H. K., McAllister, S. R., Mönnigmann, M., & Rajgaria, R. (2006). Advances in protein structure prediction and de novo protein design: A review. Chemical Engineering Science, 61(3), 966–988.

    Article  Google Scholar 

  • Frishman, D., & Argos, P. (1997). Seventy-five percent accuracy in protein secondary structure prediction. Proteins: Structure, Function, and Bioinformatics, 27(3), 329–335.

    Article  Google Scholar 

  • Gahoi, S., Mandal, R. S., Ivanisenko, N., Shrivastava, P., Jain, S., Singh, A. K., et al. (2013). Computational screening for new inhibitors of M. tuberculosis mycolyltransferases antigen 85 group of proteins as potential drug targets. Journal of Biomolecular Structure and Dynamics, 31(1), 30–43.

    Google Scholar 

  • Garg, S., Saxena, V., Kanchan, S., Sharma, P., Mahajan, S., Kochar, D., et al. (2009). Novel point mutations in sulfadoxine resistance genes of Plasmodium falciparum from India. Acta Tropica, 110(1), 75–79.

    Article  Google Scholar 

  • Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology, 120(1), 97–120.

    Article  Google Scholar 

  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer applications in the biosciences: CABIOS, 11(6), 681–684.

    Google Scholar 

  • Ginalski, K., Elofsson, A., Fischer, D., & Rychlewski, L. (2003). 3D-Jury: A simple approach to improve protein structure predictions. Bioinformatics, 19(8), 1015–1018.

    Article  Google Scholar 

  • Gong, H., & Rose, G. D. (2005). Does secondary structure determine tertiary structure in proteins? Proteins: Structure, Function, and Bioinformatics, 61(2), 338–343.

    Article  Google Scholar 

  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.

    Article  Google Scholar 

  • Heinig, M., & Frishman, D. (2004). STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research, 32(Web Server issue), W500–W502.

    Article  Google Scholar 

  • Huang, Y. J., Mao, B., Aramini, J. M., & Montelione, G. T. (2014). Assessment of template-based protein structure predictions in CASP10. Proteins: Structure, Function, and Bioinformatics, 82(2), 43–56.

    Article  Google Scholar 

  • Hung, L.- H., Ngan, S.- C., Liu, T., & Samudrala, R. (2005). PROTINFO: New algorithms for enhanced protein structure predictions. Nucleic Acids Research, 33(Web Server issue), W77–W80.

    Article  Google Scholar 

  • Jauch, R., Yeo, H. C., Kolatkar, P. R., & Clarke, N. D. (2007). Assessment of CASP7 structure predictions for template free targets. Proteins: Structure, Function, and Bioinformatics, 69(8), 57–67.

    Article  Google Scholar 

  • Jayaram, B., Bhushan, K., Shenoy, S. R., Narang, P., Bose, S., Agrawal, P., et al. (2006). Bhageerath: An energy based web enabled computer software suite for limiting the search space of tertiary structures of small globular proteins. Nucleic Acids Research, 34(21), 6195–6204.

    Article  Google Scholar 

  • Jones, D. T. (1999a). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292(2), 195–202.

    Article  Google Scholar 

  • Jones, D. T. (1999b). GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. Journal of Molecular Biology, 287(4), 797–815.

    Article  Google Scholar 

  • Jones, D. T., Taylort, W. R., & Thornton, J. M. (1992). A new approach to protein fold recognition. Nature, 358, 86–89.

    Article  Google Scholar 

  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., et al. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522.

    Article  Google Scholar 

  • Karplus, K., Barrett, C., & Hughey, R. (1998). Hidden Markov models for detecting remote protein homologies. Bioinformatics, 14(10), 846–856.

    Article  Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.

    Article  Google Scholar 

  • Kelley, L. A., & Sternberg, M. J. E. (2009). Protein structure prediction on the Web: A case study using the Phyre server. Nature Protocols, 4(3), 363–371.

    Article  Google Scholar 

  • Kesheri, M., Richa, & Sinha, R. P. (2011). Antioxidants as natural arsenal against multiple stresses in cyanobacteria. International Journal of Pharma and Bio Sciences, 2(2), B168–B187.

    Google Scholar 

  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32(Web Server issue), W526–W531.

    Article  Google Scholar 

  • Kim, H., & Park, H. (2003). Protein secondary structure prediction based on an improved support vector machines approach. Protein Engineering, 16(8), 553–560.

    Article  Google Scholar 

  • Klepeis, J. L., & Floudas, C. A. (2003). ASTRO-FOLD: A combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophysical Journal, 85(4), 2119–2146.

    Article  Google Scholar 

  • Klepeis, J. L., Wei, Y., Hecht M. H., & Floudas, C. A. (2005). Ab initio prediction of the three-dimensional structure of a de novo designed protein: A double-blind case study. Proteins: Structure, Function, and Bioinformatics, 58(3), 560–570.

    Google Scholar 

  • Kryshtafovych, A., Fidelis, K., & Moult, J. (2014). CASP10 results compared to those of previous CASP experiments. Proteins: Structure, Function, and Bioinformatics, 82(2), 164–174.

    Article  Google Scholar 

  • Kurowski, M. A., & Bujnicki, J. M. (2003). GeneSilico protein structure prediction meta-server. Nucleic Acids Research, 31(13), 3305–3307.

    Article  Google Scholar 

  • Lambert, C., Léonard, N., De, B. X., & Depiereux, E. (2002). ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 18(9), 1250–1256.

    Article  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Google Scholar 

  • Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystalography, 26, 283–291.

    Article  Google Scholar 

  • Lassmann, T., & Sonnhammer, E. (2005). Kalign—An accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics, 6(1), 298.

    Article  Google Scholar 

  • Lisewski, A. M., & Lichtarge, O. (2006). Rapid detection of similarity in protein structure and function through contact metric distances. Nucleic Acids Research, 34(22), e152.

    Article  Google Scholar 

  • Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academy of Sciences, USA, 96(10), 5482–5485.

    Article  Google Scholar 

  • Lundström, J., Rychlewski, L., Bujnicki, J., & Elofsson, A. (2001). Pcons: A neural-network–based consensus predictor that improves fold recognition. Protein Science, 10(11), 2354–2362.

    Article  Google Scholar 

  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356, 83–85.

    Article  Google Scholar 

  • Manepalli, S., Surratt, C., Madura, J., & Nolan, T. (2012). Monoamine transporter structure, function, dynamics, and drug discovery: A computational perspective. American Association of Pharmaceutical Scientists Journal, 14(4), 820–831.

    Google Scholar 

  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16(4), 404–405.

    Article  Google Scholar 

  • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology, 443, 365–382.

    Google Scholar 

  • Moult, J. (2005). A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structural Biology, 15(3), 285–289.

    Article  Google Scholar 

  • Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., & Tramontano, A. (2014). Critical assessment of methods of protein structure prediction (CASP)-round x. Proteins: Structure, Function, and Bioinformatics, 82(2), 1–6.

    Article  Google Scholar 

  • Moult, J., & Melamud, E. (2000). From fold to function. Current Opinion in Structural Biology, 10(3), 384–389.

    Article  Google Scholar 

  • Moult, J., Pedersen, J. T., Judson, R., & Fidelis, K. (1995). A large-scale experiment to assess protein structure prediction methods. Proteins: Structure, Function, and Bioinformatics, 23(3), ii–iv.

    Google Scholar 

  • Nair, R., & Rost, B. (2003). Better prediction of sub-cellular localization by combining evolutionary and structural information. Proteins: Structure, Function, and Bioinformatics, 53(4), 917–930.

    Article  Google Scholar 

  • Nair, R., & Rost, B. (2005). Mimicking cellular sorting improves prediction of subcellular localization. Journal of Molecular Biology, 348(1), 85–100.

    Article  Google Scholar 

  • Nanias, M., Chinchio, M., Ołdziej, S., Czaplewski, C., & Scheraga, H. A. (2005). Protein structure prediction with the UNRES force-field using replica-exchange Monte Carlo-with-minimization; comparison with MCM, CSA, and CFMC. Journal of Computational Chemistry, 26(14), 1472–1486.

    Article  Google Scholar 

  • Nielsen, M., Lundegaard, C., Lund, O., & Petersen, T. N. (2010). CPHmodels-3.0—Remote homology modeling using structure-guided sequence profiles. Nucleic Acids Research, 38(Web Server issue), W576–W581.

    Article  Google Scholar 

  • Norel, R., Petrey, D., & Honig, B. (2010). PUDGE: A flexible, interactive server for protein structure prediction. Nucleic Acids Research, 38(Web Server issue), W550–W554.

    Article  Google Scholar 

  • Peng, J., & Xu, J. (2009). Boosting protein threading accuracy (Vol. 5541, pp. 31–45). Lecture Notes in Computer Science.

    Google Scholar 

  • Peng, J., & Xu, J. (2010). Low-homology protein threading. Bioinformatics, 26(12), i294–i300.

    Article  MathSciNet  Google Scholar 

  • Pieper, U., Webb, B. M., Barkan, D. T., Schneidman-Duhovny, D., Schlessinger, A., Braberg, H., et al. (2011). MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Research, 39(Database issue), D465–D474.

    Google Scholar 

  • Pollastri, G., & McLysaght, A. (2005). Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics, 21(8), 1719–1720.

    Article  Google Scholar 

  • Przybylski, D., & Rost, B. (2002). Alignments grow, secondary structure prediction improves. Proteins: Structure, Function, and Bioinformatics, 46(2), 197–205.

    Article  Google Scholar 

  • Przytycka, T., Aurora, R., & Rose, G. D. (1999). A protein taxonomy based on secondary structure. Nature Structural & Molecular Biology, 6(7), 672–682.

    Article  Google Scholar 

  • Rost, B., Sander, C., & Schneider, R. (1994). PHD-an automatic mail server for protein secondary structure prediction. Computer Applications in the Biosciences: CABIOS, 10(1), 53–60.

    Google Scholar 

  • Runthala, A., & Chowdhury, S. (2013). Protein structure prediction: Are we there yet?. In D. P. Tuan, & L. C. Jain (Eds.), Knowledge-based systems in biomedicine and computational life science (Vol. 450, pp. 9–115). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Šali, A., & Blundell, T. L. (1993). Comparative Protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815.

    Article  Google Scholar 

  • Sali, A., Matsumoto, R., McNeil, H. P., Karplus, M., & Stevens, R. L. (1993). Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan binding regions and protease-specific antigenic epitopes. Journal of Biological Chemistry, 268(12), 9023–9034.

    Google Scholar 

  • Sen, T. Z., Jernigan, R. L., Garnier, J., & Kloczkowski, A. (2005). GOR V server for protein secondary structure prediction. Bioinformatics, 21(11), 2787–2788.

    Article  Google Scholar 

  • Shi, J., Blundell, T. L., & Mizuguchi, K. (2001). FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. Journal of Molecular Biology, 310(1), 243–257.

    Article  Google Scholar 

  • Siew, N., Elofsson, A., Rychlewski, L., & Fischer, D. (2000). MaxSub: An automated measure for the assessment of protein structure prediction quality. Bioinformatics, 16(9), 776–785.

    Article  Google Scholar 

  • Skolnick, J., Fetrow, J. S., & Kolinski, A. (2000). Structural genomics and its importance for gene function analysis. Nature Biotechnology, 18(3), 283–287.

    Article  Google Scholar 

  • Skolnick, J., Kihara, D., & Zhang, Y. (2004). Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins: Structure, Function, and Bioinformatics, 56(3), 502–518.

    Article  Google Scholar 

  • Skolnick, J., & Kolinski, A. (2002). A unified approach to the prediction of protein structure and function. In R. Friesner (Ed.), A Computational Methods for Protein Folding (Vol. 120, pp. 131-192). USA: Wiley.

    Google Scholar 

  • Söding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research, 33(Web Server issue), W244–W248.

    Google Scholar 

  • Su, E., Chiu, H.- S., Lo, A., Hwang, J.- K., Sung, T.- Y., & Hsu, W.- L. (2007). Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinformatics, 8(1), 330.

    Article  Google Scholar 

  • Takeda-Shitaka, M., Takaya, D., Chiba, C., Tanaka, H., & Umeyama, H. (2004). Protein structure prediction in structure based drug design. Current Medicinal Chemistry, 11(5), 551–558.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  Google Scholar 

  • Teodorescu, O., Galor, T., Pillardy, J., & Elber, R. (2004). Enriching the sequence substitution matrix by structural information. Proteins: Structure, Function, and Bioinformatics, 54(1), 41–48.

    Article  Google Scholar 

  • Vakser, I. A. (1997). Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins: Structure, Function, and Bioinformatics, 29(1), 226–230.

    Article  Google Scholar 

  • Wallner, B., Larsson, P., & Elofsson, A. (2007). Pcons.net: Protein structure prediction meta server. Nucleic Acids Research, 35(Web Server issue), W369–W374.

    Article  Google Scholar 

  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410.

    Article  Google Scholar 

  • Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y., & Burley, S. K. (1998). Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell, 94(4), 439–449.

    Article  Google Scholar 

  • Wu, S., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Research, 35(10), 3375–3382.

    Article  Google Scholar 

  • Wu, S., & Zhang, Y. (2008). MUSTER: Improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function, and Bioinformatics, 72(2), 547–556.

    Article  Google Scholar 

  • Xu, Y., & Xu, D. (2000). Protein threading using PROSPECT: Design and evaluation. Proteins: Structure, Function, and Bioinformatics, 40(3), 343–354.

    Article  Google Scholar 

  • Xu, J., & Zhang, Y. (2010). How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics, 26(7), 889–895.

    Article  Google Scholar 

  • Xu, D., & Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Structure, Function, and Bioinformatics, 80(7), 1715–1735.

    Google Scholar 

  • Yang, Y., Faraggi, E., Zhao, H., & Zhou, Y. (2011). Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics, 27(15), 2076–2082.

    Article  Google Scholar 

  • Yi, T.-M., & Lander, E. S. (1993). Protein secondary structure prediction using nearest-neighbor methods. Journal of Molecular Biology, 232(4), 1117–1129.

    Article  Google Scholar 

  • Zemla, A., Venclovas, Č., Fidelis, K., & Rost, B. (1999). A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins: Structure, Function, and Bioinformatics, 34(2), 220–223.

    Article  Google Scholar 

  • Zhang, Y., Arakaki, A. K., & Skolnick, J. (2005). TASSER: An automated method for the prediction of protein tertiary structures in CASP6. Proteins: Structure, Function, and Bioinformatics, 61(7), 91–98.

    Article  Google Scholar 

  • Zhang, Y., Kolinski, A., & Skolnick, J. (2003). TOUCHSTONE II: A new approach to Ab initio protein structure prediction. Biophysical Journal, 85(2), 1145–1164.

    Article  Google Scholar 

  • Zhang, Y., & Skolnick, J. (2004). Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophysical Journal, 87(4), 2647–2655.

    Article  Google Scholar 

  • Zhou, H., & Zhou, Y. (2005). Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins: Structure, Function, and Bioinformatics, 58(2), 321–328.

    Article  Google Scholar 

  • Zuccotto, F. Z. M., Brun, R., Chowdhury, S. F., Di, L. R., Leal, I., Maes, L., et al. (2001). Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase. European Journal of Medicinal Chemistry, 36(5), 395–405.

    Article  Google Scholar 

Download references

Acknowledgments

Minu Kesheri is thankful to University Grant Commission, Govt. of India, New Delhi, for providing financial assistance in the form of research fellowship. Swarna Kanchan is thankful to University Grant Commission, Govt. of India, New Delhi for providing the financial support in the form of the Basic Science Research Fellowship under University Grant Commission (New Delhi) Special Assistance Programme to Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarna Kanchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kesheri, M., Kanchan, S., Chowdhury, S., Sinha, R.P. (2015). Secondary and Tertiary Structure Prediction of Proteins: A Bioinformatic Approach. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics