Skip to main content

Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode Decomposition

  • Chapter
  • First Online:
Complex System Modelling and Control Through Intelligent Soft Computations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

Epileptic seizure occurs as a result of abnormal transient disturbance in the electrical activities of the brain. The electrical activities of brain fluctuate frequently and can be analyzed using electroencephalogram (EEG) signals. Therefore, the EEG signals are commonly used signals for obtaining the information related to the pathological states of brain. The EEG recordings of an epileptic patient contain a large amount of EEG data which may require time-consuming manual interpretations. Thus, automatic EEG signal analysis using advanced signal processing techniques plays a significant role to recognize epilepsy in EEG recordings. In this work, the empirical mode decomposition (EMD) has been applied for analysis of normal and epileptic seizure EEG signals. The EMD generates the set of amplitude and frequency modulated components known as intrinsic mode functions (IMFs). Two area measures have been computed, one for the graph obtained as the analytic signal representation of IMFs in complex plane and another for second-order difference plot (SODP) of IMFs of EEG signals. Both of these area measures have been computed for first four IMFs of the normal and epileptic seizure EEG signals. These eight features obtained from both area measures of first four IMFs have been used as input feature set for classification of normal and epileptic seizure EEG signals using least square support vector machine (LS-SVM) classifier. Among all three kernel functions namely, linear, polynomial, and radial basis function (RBF) used for classification, the RBF kernel has provided best classification accuracy in the classification of normal and epileptic seizure EEG signals. The proposed method based on the two area measures of IMFs obtained using EMD process, together with LS-SVM classifier has been studied on EEG dataset publicly available by the University of Bonn, Germany. Experimental results have been included to show the effectiveness of the proposed method in comparison to other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77, 339–350.

    Article  MATH  Google Scholar 

  • Acharya, U. R., Sree, S. V., Alvin, A. P. C., & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.

    Article  Google Scholar 

  • Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165.

    Article  Google Scholar 

  • Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211.

    Article  Google Scholar 

  • Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.

    Article  Google Scholar 

  • Amoud, H., Snoussi, H., Hewson, D. J., and Duchêne, J. (2007). Hilbert-Huang transformation: Application to postural stability analysis. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1562–1565), Lyon, France , 29–23 Aug 2007.

    Google Scholar 

  • Andrzejak, R. G., et al. (2001). Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.

    Article  MathSciNet  Google Scholar 

  • Aurlien, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–673.

    Article  Google Scholar 

  • Azar, A. T., & El-Said, S. A. (2014). Performance analysis of support vector machines classifier in breast cancer mammography recognition. Neural Computings and Applications. 24(5), 1163–1177. doi:10.1007/S00521-012-1324-4.

    Article  Google Scholar 

  • Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.

    Article  Google Scholar 

  • Boashash, B., Mesbah, M., & Colditz, P. (2003). Time–frequency detection of EEG abnormalities. In B. Boashash (Ed.), Time-frequency signal analysis and processing: A comprehensive reference (pp. 663–670). Oxford: Elsevier.

    Google Scholar 

  • Casdagli, M. C., et al. (1997). Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 102(2), 98–105.

    Article  Google Scholar 

  • Cavalheiro, G. L., Almeida, M. F. S., Pereira, A., & Andrade, A. O. (2009). Study of age-related changes in postural control during quiet standing through linear discriminant analysis. BioMedical Engineering Online, 8(35), 10–1186.

    Google Scholar 

  • Cohen, M. E., Hudson, D. L., & Deedwania, P. C. (1996). Applying continuous chaotic modeling to cardic signal analysis. IEEE Engineering in Medicine and Biology Magazine, 15(5), 97–102.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  • Coyle, D., McGinnity, T. M., & Prasad, G. (2010). Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control, 5(3), 196–204.

    Article  Google Scholar 

  • Cross, D. J., & Cavazos, J. E. (2007). The role of sprouting and plasticity in epileptogenesis and behavior. In S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), Behavioural Aspects of Epilepsy (pp. 51–57). New York: Demos Medical Publishing.

    Google Scholar 

  • Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31–38.

    Article  Google Scholar 

  • Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551.

    Article  Google Scholar 

  • Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512–518.

    Article  Google Scholar 

  • Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506–514.

    Article  Google Scholar 

  • Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.

    Article  Google Scholar 

  • Hirtz, D., Thurman, D. J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A. R., & Zalutsky, R. (2007). How common are the “common” neurologic disorders? Neurology, 68(5), 326–337.

    Article  Google Scholar 

  • Huang, N. E., et al. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995.

    Article  MATH  Google Scholar 

  • Iasemidis, L. D., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616–627.

    Article  Google Scholar 

  • Ince, N. F., Goksu, F., Tewfik, A. H., & Arica, S. (2009). Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomedical Signal Processing and Control, 4(3), 236–246.

    Article  Google Scholar 

  • Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.

    Article  Google Scholar 

  • Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.

    Article  Google Scholar 

  • Khandoker, A. H., Lai, D. T. H., Begg, R. K., & Palaniswami, M. (2007). Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(4), 587–597.

    Article  Google Scholar 

  • Lai, Y. C., & Ye, N. (2003). Recent developments in chaotic time series analysis. International Journal of Bifurcation and Chaos, 13(6), 1383–1422.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. (2013). Feature extraction & recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine, 43(7), 807–816.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Ray, G. C. (1998). A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering, 45(2), 180–187.

    Article  Google Scholar 

  • Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51, 883–890.

    Article  Google Scholar 

  • Nigam, V. P., & Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurological Research, 26, 55–60.

    Article  Google Scholar 

  • Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2017–2036.

    Article  Google Scholar 

  • Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMedical Engineering Online, 10, 38.

    Article  Google Scholar 

  • Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 293056, 5 p.

    Google Scholar 

  • Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.

    Article  Google Scholar 

  • Pachori, R. B., Hewson, D., Snoussi, H., & Duchêne, J. (2009). Postural time-series analysis using empirical mode decomposition and second-order difference plots. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 537–540), Taipei, Taiwan, 19–24 Apr 2009.

    Google Scholar 

  • Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.

    Article  Google Scholar 

  • Pachori, R. B., & Sircar, P. (2008). EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Processing, 88(2), 415–420.

    Article  MATH  Google Scholar 

  • Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026.

    Article  MATH  MathSciNet  Google Scholar 

  • Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Mykelbust, B. M. (1996). Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956–966.

    Article  Google Scholar 

  • Ramsay, R. E., Rowan, A. J., & Pryor, F. M. (2004). Special considerations in treating the elderly patient with epilepsy. Neurology, 62(5 suppl 2), S24–S29.

    Article  Google Scholar 

  • Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.

    Article  Google Scholar 

  • Schomer, D. L., & da Silva, F. L. (Eds.) (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincot Williams & Wilkins.

    Google Scholar 

  • Senthil, P. K., Arumuganathan, R., Sivakumar, K., & Vimal, C. (2008). Removal of artifacts from EEG signals using adaptive filter through wavelet transform. In 9th IEEE International Conference on Signal Processing, 2008 (pp. 2138–2141).

    Google Scholar 

  • Sharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals. In IEEE International Conference on Medical Biometrics (pp. 135–140), Shenzhen, China, 30 May–01 June 2014.

    Google Scholar 

  • Srinivasan, V., Eswaran, C., & Sriraam, N. (2005). Artificial neural network based epileptic detection using time–domain and frequency–domain features. Journal of Medical Systems, 29(6), 647–660.

    Article  Google Scholar 

  • Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.

    Article  Google Scholar 

  • Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093.

    Article  Google Scholar 

  • Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications, 37(12), 8659–8666.

    Article  Google Scholar 

  • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

    Article  MathSciNet  Google Scholar 

  • Thuraisingham, R. A., Tran, Y., Boord, P., & Craig, A. (2007). Analysis of eyes open, eye closed EEG signals using second-order difference plot. Medical & Biological Engineering & Computing, 45(12), 1243–1249.

    Article  Google Scholar 

  • Thurman, D. J., et al. (2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 52(s7), 2–26.

    Article  Google Scholar 

  • Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2007). The use of time–frequency distributions for epileptic seizure detection in EEG recordings. In Proceedings of 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (pp. 3–6), August 2007.

    Google Scholar 

  • Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703–710.

    Article  Google Scholar 

  • Übeyli, E. D. (2010). Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications, 37(2), 985–992.

    Article  Google Scholar 

  • Uthayakumar, R. & Easwaramoorthy, D. (2013). Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals, 21(2).

    Google Scholar 

  • World Health Organization. (2014). Neurological disorders, including epilepsy. Retrieved from http://www.who.int/mental_health/management/neurological/en/. Accessed 8 Apr 2014.

  • Yuan, Q., Cai, C., Xiao, H., Liu, X., & Wen, Y. (2007). Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Communications in Computer and Information Science, 2, 1250–1260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilas Pachori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pachori, R.B., Sharma, R., Patidar, S. (2015). Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode Decomposition. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics