Skip to main content

Modelling of Intrusion Detection System Using Artificial Intelligence—Evaluation of Performance Measures

  • Chapter
  • First Online:
Complex System Modelling and Control Through Intelligent Soft Computations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

  • 2267 Accesses

Abstract

In recent years, applications of internet and computers are growing extremely used by many people all over the globe—so is the susceptibility of the network. In contrast, network intrusion and information security problems are consequence of internet application. The increasing network intrusions have placed people and organizations to a great extent at peril of many kinds of loss. With the aim to produce effectiveness and state-of-the-art concern, the majority organizations put their applications and service things on internet. The organizations are even investing huge money to care for their susceptible data from diverse attacks that they face. Intrusion detection system is a significant constituent to protect such information systems. A state-of-the-art review of the applications of neural network to Intrusion Detection System has been presented that reveals the positive trend towards applications of artificial neural network. Various other parameters have been selected to explore for a theoretical construct and identifying trends of ANN applications to IDS. The research also proposed an architecture based on Multi Layer Perceptron (MLP) neural network to develop IDS applied on KDD99 data set. Based on the identified patterns, the architecture recognized attacks in the datasets using the back propagation neural network algorithm. The proposed MLP neural network has been found to be superior when compared with Recurrent and PCA neural network based on the common measures of performance. The proposed neural network approach has resulted with higher detection rate (99.10 %), accuracy rate (98.89 %) and a reduced amount of execution time (11.969 s) and outperforms the benchmark results of six approaches from literature. Thus the analysis based on experimental outcomes of the MLP approach has established the robustness, effectiveness in detecting intrusion that can further improve the performance by reducing the computational cost without obvious deterioration of detection performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J. (1995). An introduction to neural networks. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Anyanwu, L. O., Keengwe, J., & Arome, G. A. (2011). Scalable intrusion detection with recurrent neural networks. International Journal of Multimedia and Ubiquitous Engineering, 6(1), 21–28.

    Google Scholar 

  • Aziz, A. S. A., Azar, A. T., Hassanien, A. E., & Hanafy, S. E. O. (2012). Continuous features discretization for anomaly intrusion detectors generation. In The 17th Online World Conference on Soft Computing in Industrial Applications (WSC17), December 10–21.

    Google Scholar 

  • Aziz, A. S. A., Azar, A. T., Hassanien, A. E., & Hanafy, S. E. O. (2014). Continuous features discretization for anomaly intrusion detectors generation. In Soft computing in industrial applications (pp. 209–221). Switzerland: Springer International Publishing.

    Google Scholar 

  • Abdel-Aziz, A. S., Hassanien, A. E., Azar, A. T., & Hanafi, S. E. O. (2013). Machine learning techniques for anomalies detection and classification. Advances in security of information and communication networks (pp. 219–229). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43(3), 413–423.

    Article  Google Scholar 

  • Behjat, A. R., Vatankhah, N., & Mustapha, A. (2014). Feature subset selection using genetic algorithm for intrusion detection system. Advanced Science Letters, 20(1), 235–238.

    Article  Google Scholar 

  • Bezdek, J. C. (1994). What is computational intelligence? Computational intelligence imitating life (pp. 1–12). New York: IEEE Press.

    Google Scholar 

  • Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble design of intrusion detection systems. Computers and Security, 24(4), 295–307.

    Article  Google Scholar 

  • Chittur, A. (2001). Model generation for an intrusion detection system using genetic algorithms. High School Honors Thesis, Ossining High School. In Cooperation with Columbia Univ. Accessed on November 27, 2013.

    Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Article  Google Scholar 

  • Dębska, B., & Guzowska-Świder, B. (2011). Application of artificial neural network in food classification. Analytica Chimica Acta, 705(1), 283–291.

    Article  Google Scholar 

  • Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2), 222–232.

    Article  Google Scholar 

  • Devaraju, S., & Ramakrishnan, S. (2011). Performance analysis of intrusion detection system using various neural network classifiers. In Recent Trends in Information Technology (ICRTIT), June 2011 International Conference on (pp. 1033–1038). IEEE.

    Google Scholar 

  • Eid, H. F., Azar, A. T., & Hassanien, A. E. (2013, January). Improved real-time discretize network intrusion detection system. In Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012) (pp. 99–109). India: Springer.

    Google Scholar 

  • El Kadhi, N., Hadjar, K., & El Zant, N. (2012). A mobile agents and artificial neural networks for intrusion detection. Journal of Software, 7(1), 156–160.

    Article  Google Scholar 

  • Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric framework for unsupervised anomaly detection. Applications of data mining in computer security (pp. 77–101). US: Springer.

    Chapter  Google Scholar 

  • Faysel, M. A., & Haque, S. S. (2010). Towards cyber defense: research in intrusion detection and intrusion prevention systems. IJCSNS International Journal of Computer Science and Network Security, 10(7), 316–325.

    Google Scholar 

  • Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. U. R., & Shamshirband, S. (2014). A study of machine learning classifiers for anomaly-based mobile Botnet detection. Malaysian Journal of Computer Science, 26(4), 251–265.

    Google Scholar 

  • Gong, R. H., Zulkernine, M., & Abolmaesumi, P. (2005, May). A software implementation of a genetic algorithm based approach to network intrusion detection. In Sixth international conference on software engineering, artificial intelligence, networking and parallel/distributed computing, 2005 and first ACIS international workshop on self-assembling wireless networks (SNPD/SAWN 2005) (pp. 246–253). IEEE.

    Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

    Article  Google Scholar 

  • Gupta, B. B., Joshi, R. C., & Misra, M. (2012). ANN based scheme to predict number of Zombies in a DDoS attack. IJ Network Security, 14(2), 61–70.

    Google Scholar 

  • Han, L. (2012). Research of K-MEANS algorithm based on information Entropy in Anomaly Detection. In Multimedia Information Networking and Security (MINES), November 2012 Fourth International Conference on (pp. 71-74). IEEE.

    Google Scholar 

  • Haykin, S. (2005). Neural networks a comprehensive foundation. New Delhi: Pearson Education.

    Google Scholar 

  • Heady R., Luger G., Maccabe A., & Servilla M. (1990, August). The architecture of a network level intrusion detection system. Technical report, Computer Science Department, University of New Mexico.

    Google Scholar 

  • Hwang, R. C., Chen, Y. J., & Huang, H. C. (2010). Artificial intelligent analyzer for mechanical properties of rolled steel bar by using neural networks. Expert Systems with Applications, 37(4), 3136–3139.

    Article  Google Scholar 

  • Ibrahim, L. M., Basheer, D. T., & Mahmod, M. S. (2013). A comparison study for intrusion database (Kdd99, Nsl-Kdd) based on self organization map (SOM) artificial neural network. Journal of Engineering Science and Technology, 8(1), 107–119.

    Google Scholar 

  • Khashei, M., Rezvan, M. T., Hamadani, A. Z., & Bijari, M. (2013). A bi-level neural-based fuzzy classification approach for credit scoring problems. Complexity, 18(6), 46–57.

    Article  MathSciNet  Google Scholar 

  • Kuanf, F., Xu, W.,  Zhang, S., Wang,Y., & Liu, K.  (2012). A novel Approach of KPCA and SVM for Intrusion Detection,  Journal of Computational Information Systems, pp 3237–3244.

    Google Scholar 

  • Kuo, R. J., Wang, Y. C., & Tien, F. C. (2010). Integration of artificial neural network and MADA methods for green supplier selection. Journal of Cleaner Production, 18(12), 1161–1170.

    Article  Google Scholar 

  • Laskov, P., Düssel, P., Schäfer, C., & Rieck, K. (2005). Learning intrusion detection: Supervised or unsupervised? In Image analysis and processing—ICIAP 2005 (pp. 50–57). Berlin Heidelberg: Springer.

    Google Scholar 

  • Lee, W., Stolfo, S. J., & Mok, K. W. (1999). A data mining framework for building intrusion detection models. In Proceedings of the 1999 IEEE symposium on security and privacy (pp. 120–132). IEEE.

    Google Scholar 

  • Liao, Y., & Vemuri, V. R. (2002). Use of K-nearest neighbor classifier for intrusion detection. Computers and Security, 21(5), 439–448.

    Article  Google Scholar 

  • Liu, J. (2013). An adaptive intrusion detection model based on ART2 neural network. Journal of Computational Information Systems, 9(19), 7775–7782.

    Google Scholar 

  • Louvieris, P., Clewley, N., & Liu, X. (2013). Effects-based feature identification for network intrusion detection. Neurocomputing, 121, 265–273.

    Article  Google Scholar 

  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12.

    Google Scholar 

  • McCarthy, J. (2007). What is artificial intelligence. http://www-formal.stanford.edu/jmc/whatisai.html. (accessed on 22 November 2013)

  • Mukhopadhyay, I., Chakraborty, M., Chakrabarti, S., & Chatterjee, T. (2011). Back propagation neural network approach to Intrusion Detection System. In Recent Trends in Information Systems (ReTIS), December 2011 International Conference on (pp. 303–308). IEEE.

    Google Scholar 

  • Naoum, R. S., Abid, N. A.,  Al-Sultani, Z. N. (2005)  “An enhanced Resilient backpropagation artificial neural network for Intrusion detection”, International Journal of Computer Science and Network Security, 2005, 12(3), 11–16.

    Google Scholar 

  • Pan Z., Chen, S., Hu, G., & Zhang, D. (2003). Hybrid neural network and C4.5 for misuse detection. In Proceedings of the second international conference on machine learning and cybernetics (Vol. 4, pp. 2463–2467). IEEE.

    Google Scholar 

  • Peláez, J. I., Doña, J. M., Fornari, J. F., & Serra, G. (2014). Ischemia classification via ECG using MLP neural networks. International Journal of Computational Intelligence Systems, 7(2), 344–352.

    Article  Google Scholar 

  • Peng, Y., Wang, Y., Niu, Y., & Hu, Q. (2014). Application study on intrusion detection system using IRBF. Journal of Software, 9(1), 177–183.

    Article  Google Scholar 

  • Saftoiu, A., Vilmann, P., Gorunescu, F., Janssen, J., Hocke, M., & Larsen, M., et al. (2012). Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clinical Gastroenterology Hepatology, 10(1), 84–90.

    Article  Google Scholar 

  • Sall, J., Creighton, L., & Lehman, A. (2007). Safari tech books online. JMP start statistics a guide to statistics and data analysis using JMP. SAS press series (4th edn.). Cary, N.C.: SAS Pub.

    Google Scholar 

  • Segurado, P., & Araujo, M. B. (2004). An evaluation of methods for modelling species distributions. Journal of Biogeography, 31(10), 1555–1568.

    Article  Google Scholar 

  • Shao, G., & Halpin, P. N. (1995). Climatic controls of eastern North American coastal tree and shrub distributions. Journal of Biogeography, 1083–1089.

    Google Scholar 

  • Sheikhan, M., & Sharifi Rad, M. (2011). Intrusion detection improvement using GA-optimized fuzzy grids-based rule mining feature selector and fuzzy ARTMAP neural network. World Applied Sciences Journal, 14, 772–781.

    Google Scholar 

  • Sheikhan, M., & Sharifi, Rad M. (2013). Using particle swarm optimization in fuzzy association rules-based feature selection and fuzzy ARTMAP-based attack recognition. Security and Communication Networks, 6(7), 797–811.

    Article  Google Scholar 

  • Sivatha Sindhu, S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight intrusion detection using a wrapper approach. Expert Systems with applications39(1), 129–141.

    Google Scholar 

  • Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based modeling for fraud and intrusion detection: Results from the JAM project. In Proceedings of the DARPA information survivability conference and exposition, 2000 (DISCEX’00) (Vol. 2, pp. 130–144). IEEE.

    Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.

    Article  MATH  MathSciNet  Google Scholar 

  • Tiwari, P. (2002). Intrusion detection. Technical Report, Department of Electrical Engineering, Indian Institute of Technology, Delhi.

    Google Scholar 

  • Tuncer, T., & Tatar, Y. (2012). Implementation of the FPGA based programmable embedded intrusion detection system. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(1), 59–69.

    Google Scholar 

  • Valero, S., Senabre, C., López, M., Aparicio, J., Gabaldon, A., & Ortiz, M. (2012). Comparison of electric load forecasting between using SOM and MLP neural network. Journal of Energy and Power Engineering, 6(3), 411–417.

    Google Scholar 

  • Wang, G., Hao, J., Ma, J., & Huang, L. (2010). A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Systems with Applications, 37(9), 6225–6232.

    Article  Google Scholar 

  • Wang, J. H., Liao, Y. L., Tsai, T. M., & Hung, G. (2006). Technology-based financial frauds in Taiwan: Issues and approaches. In SMC (pp. 1120–1124).

    Google Scholar 

  • Wu, S. X., & Banzhaf, W. (2010). The use of computational intelligence in intrusion detection systems: A review. Applied Soft Computing, 10(1), 1–35.

    Article  MATH  Google Scholar 

  • Xiang, Z., Zhu, J., Han, W., & Ding, J. (2013). On the capability of SOINN based intrusion detection systems. Journal of Computational Information Systems, 9(3), 941–949.

    Google Scholar 

  • Yang, S., Yang, Y., Shen, Q., & Huang, H. (2013). A method of intrusion detection based on semi-supervised GHSOM. In Jisuanji Yanjiu yu Fazhan/Computer Research and Development. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, November 2013 (Vol. 50(11), pp. 2375–2382).

    Google Scholar 

  • Yao, J. T., Zhao, S. L., & Saxton, L. V. (2005). A study on fuzzy intrusion detection. In B. V. Dasarathy (Ed.), In Proceedings of SPIE vol. 5812, data mining, intrusion detection, information assurance, and data networks security, 28 March–1 April 2005 (pp. 23–30). Orlando, Florida, USA, Bellingham, WA: SPIE.

    Google Scholar 

  • Zainaddin, A., Asyiqin, D., & Mohd Hanapi, Z. (2013). Hybrid of fuzzy clustering neural network over NSL dataset for intrusion detection system. Journal of Computer Science, 9(3), 391–403.

    Article  Google Scholar 

  • Zhao, Y., Zha, Y., & Zha, X. (2013). Network intrusion detection based on IPSO-BPNN. Information Technology Journal, 12(14), 2719–2725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojit Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chattopadhyay, M. (2015). Modelling of Intrusion Detection System Using Artificial Intelligence—Evaluation of Performance Measures. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics