Skip to main content

Electrochemical Hierarchical Composites

  • Chapter
  • First Online:
Hybrid and Hierarchical Composite Materials

Abstract

Composites with hierarchical structures are considered to be one of the most prevailing materials for various electrochemical applications as they constitute a complex architecture that provides a large internal surface area and enables synergistic effects for electrochemical reactions at the interface. Considering novel nanoscale properties with large-scale processability and affordable cost, hierarchically structured composites could potentially provide the new and transformative approaches to meet the challenges for the modern society: enabling powerful electrochemical devices for renewable energy conversion and storage and environmental monitoring. This chapter reviews the applications of hierarchically structured composites for energy storage, energy conversion, and environmental monitoring. In the section of energy storage, supercapacitors and batteries are intensively reviewed with emphasis on the design, synthesis, and performance evaluation of the hierarchically structured composites; in the section of energy conversion, photoelectrochemical cells and fuel cells are introduced; and in the section of environmental monitoring, we introduce some sensing devices based on the hierarchically structured composites. The fundamental understanding of the structure–property relationship between these hierarchically structured materials and their performances in electrochemical devices will further promote the design of new electrochemical materials with unprecedented properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arico AS, Bruce PG, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Google Scholar 

  • Bagotsky VS (2012) Fuel cells: problems and solutions, second edition, John Wiley & Sons, Inc., Hoboken, New Jersey.

    Google Scholar 

  • Bai H, Li C, Shi GQ (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115

    Google Scholar 

  • Bandosz TJ, Biggs MJ, Gubbins KE, Hattori Y, Liyama T, Kaneko K, Pikunic J, Thomson KT (2003) Chemistry & physics of carbon: Volume 28, Marcel Dekker, New York.

    Google Scholar 

  • Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4:A317–A140

    Google Scholar 

  • BĂ©langer D, Brousse T, Long JW (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 17:49–52

    Google Scholar 

  • Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sour 68:87–90

    Google Scholar 

  • Besenhard JO, Yang J, Winter M (2000) Dispersion of Sn and SnO on carbon anodes. J Power Sour 90:70–75

    Google Scholar 

  • Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Google Scholar 

  • Biener J, Staderman M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667

    Google Scholar 

  • Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2:1050–1059

    Google Scholar 

  • Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495–500

    Google Scholar 

  • Brandon NP, Brett DJ (2006) Engineering porous materials for fuel cell applications. Phil Trans R Soc A 15:147–159

    Google Scholar 

  • Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783

    Google Scholar 

  • Bridel JS, Azais T, Morcrette M, Tarascon J-M, Larcher D (2009) Key parameters governing the reversibility of si/carbon/CMC electrodes for li-ion batteries. Chem Mater 22:1229–1241

    Google Scholar 

  • Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Google Scholar 

  • Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008a) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Google Scholar 

  • Chan CK, Zhang XF, Cui Y (2008b) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8:307–309

    Google Scholar 

  • Chen XF, Wang XC, Fu XZ (2009) Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. Energy Environ Sci 2:872–877

    Google Scholar 

  • Chen P-C, Shen G, Shi Y, Chen H, Zhou C (2010a) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403–4411

    Google Scholar 

  • Chen S, Zhu J, Wu X, Han Q, Wang X (2010b) Graphene oxide–MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Google Scholar 

  • Chen L-H, Li X-J, Tian G, Li Y, Rooke JC, Zhu G-S, Qiu S-L, Yang X-Y, Su B-L (2011) Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angew Chem Int Ed Engl 50:11156–11161

    Google Scholar 

  • Chen M, Wu B, Yang J, Zheng N (2012) Small-adsorbate assisted shape control of Pd and Pt nanocrystals. Adv Mater 24:862–79

    Google Scholar 

  • Cherepy NJ, Krueger R, Fiet KJ, Jankowski AF, Cooper JF (2005) Direct conversion of carbon fuels in a molten carbonate fuel cell. J Electrochem Soc 152:A80–A87

    Google Scholar 

  • Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480–483

    Google Scholar 

  • Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

    Google Scholar 

  • Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Google Scholar 

  • Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum Press, New York.

    Google Scholar 

  • Cottineau T, Toupin M, Delahaye T, Brousse T, BĂ©langer D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Google Scholar 

  • Dahn JR, McKinnon WR (1987) Structure and electrochemistry of LixMoO2 . Solid State Ion 23:1–7

    Google Scholar 

  • Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi J-Y, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620

    Google Scholar 

  • Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118:1547–1549

    Google Scholar 

  • Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Google Scholar 

  • Ding Y-S, Shen X-F, Gomez S, Luo H, Aindow M, Suib SL (2006) Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures. Adv Funct Mater 16:549–555

    Google Scholar 

  • Ding L-X, Wang A-L, Ou Y-N, Li Q, Guo R, Zhao W-X, Tong Y-X and Li G-R (2013) Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation. Sci Rep 3:1181

    Google Scholar 

  • Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Google Scholar 

  • Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728

    Google Scholar 

  • Fang B, Kim JH, Kim M, Yu J-S (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21:789–796

    Google Scholar 

  • Fang X, Guo B, Shi Y, Li B, Hua C, Yao C, Zhang Y, Hu YS, Wang Z, Stucky GD, Chen L (2012) Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. Nanoscale 4:1541–1544

    Google Scholar 

  • Flandrois S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37:165–180

    Google Scholar 

  • Forzani ES, Zhang H, Nagahara LA, Amlani I, Tsui R, Tao N (2004) A conducting polymer nanojunction sensor for glucose detection. Nano Lett 4:1785–1788

    Google Scholar 

  • Fukishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Google Scholar 

  • Galli G, Martin RM, Car R, Parrinello M (1989) Structural and electronic properties of amorphous carbon. Phys Rev Lett 62:555–558

    Google Scholar 

  • Galli G, Martin RM, Car R, Parrinello M (1990) Ab initio calculation of properties of carbon in the amorphous and liquid states. Phys Rev B Condens Matter 42:7470–7482

    Google Scholar 

  • Gao P, Wang ZL (2002) Self-assembled nanowire–nanoribbon junction arrays of ZnO. J Phys Chem B 106:12653–12658

    Google Scholar 

  • Gao M-R, Gao Q, Jiang JW, Cui C-H, Yao W-T, Yu S-H (2011a) A methanol tolerant cathode catalyst Pt/CoSe2 nanobelts for direct methanol fuel cell. Angew Chem Int Ed Engl 50:4905–4908

    Google Scholar 

  • Gao QA, Guo YY, Zhang WY, Qi HL, Zhang CX (2011b) An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode. Sens Actuators B 153:219–225

    Google Scholar 

  • Gao PX, Shimpi P, Gao H, Liu C, Cai W, Liao KT, Wrobel G, Zhang Z, Ren Z, Lin HJ (2012) Hierarchical assembly of multifunctional oxide-based composite nanostructures for energy and environmental applications. Int J Mol Sci 13:7393–7423

    Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Google Scholar 

  • GĂĽlzow E (1996) Alkaline fuel cells: a critical view. J Power Sour 61:99–104

    Google Scholar 

  • Guo S, Dong S, Wang E (2009) Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 5:1869–1876

    Google Scholar 

  • Haile SM (2003) Fuel cell materials and components. Acta Mater. 51:5981–6000

    Google Scholar 

  • Hartmann M, Vinu A (2002) Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption. Langmuir 18:8010–8016

    Google Scholar 

  • He Z, Liu J, Qiao Y, Li CM, Tan TTY (2012) Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett 12:4738–4741

    Google Scholar 

  • Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    Google Scholar 

  • Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43:963–973

    Google Scholar 

  • Heon M, lofland S, Applegate J, Nolte R, Cortes E, Hettinger JD, Taberna P-L, Simin P, Huang P, Brunet M, Gototsi Y (2011) Continuous carbide-derived carbon films with high volumetric capacitance. Energy Environ Sci 4:135–138

    Google Scholar 

  • Hochbaum AI, Gargas D, Hwang YJ, Yang P (2009) Single crystalline mesoporous silicon nanowires. Nano Lett 9:3550–3554

    Google Scholar 

  • Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, Schlesinger ME, Schneider SH, Watts RG, Wigley TML, Wuebbles DJ (1998) Energy implications of future stabilization of atmospheric CO2 content. Nature 395:881–884

    Google Scholar 

  • Hong JW, Kim D, Lee YW, Kang SW, Han SW (2011) Atomic-distribution dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew Chem Int Ed 50:8876–8880

    Google Scholar 

  • Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Google Scholar 

  • Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Google Scholar 

  • Hu L, Wu HB, Hong SS, Cui L, McDonough JR, Bohy S, Cui Y (2011) Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem Commun (Camb) 47:367–369

    Google Scholar 

  • Hu L, Chen M, Fang X, Wu L (2012) Oil-water interfacial self-assembly: a novel strategy for nanofilm and nanodevice fabrication. Chem Soc Rev 41:1350–1362

    Google Scholar 

  • Hwang YJ, Wu CH, Hahn C, Jeong HE, Yang P (2012) Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. Nano Lett 12:1678–1682

    Google Scholar 

  • Hyder MN, Lee SW, Cebeci FC, Schmidt DJ, Yang S-H, Hammond PT (2011) Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. ACS Nano 5:8552–8561

    Google Scholar 

  • Jiang Y-M, Wang K-X, Zhang H-J, Wang J-F, Chen J-S (2013) Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Sci Rep 3:3490

    Google Scholar 

  • Kay A, Cesar I, GraĂŚtzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721

    Google Scholar 

  • Kennedy T, Mullane E, Geaney H, Osiak M, O'Dwyer C, Ryan KM (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14:716–723

    Google Scholar 

  • Kim HJ, Han B, Choo J, Cho J (2008) Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed Engl 47:10151–10154

    Google Scholar 

  • Kim H, Lee I, Kwon Y, Kim BC, Ha S, Lee JH, Kim J (2011) Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens Bioelectron 26:3908–3913

    Google Scholar 

  • Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun (Camb) 2136–2137

    Google Scholar 

  • Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity li-ion batteries. Science 333:75–79

    Google Scholar 

  • Lao JY, Wen JG, Ren ZF (2002) Hierarchical ZnO nanostructures. Nano Lett 2:1287–1291

    Google Scholar 

  • Lee SH, Lee DH, Lee WJ, Kim SO (2011) Tailored assembly of carbon nanotubes and graphene. Adv Funct Mater 21:1338–1354

    Google Scholar 

  • Lee SW, McDowell MT, Berla LA, Nix WD, Cui Y (2012) Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc Natl Acad Sci U S A 109:4080–4085

    Google Scholar 

  • Lee S-H, Sridhar V, Jung J-H, Karthikeyan K, Lee Y-S, Mukherjee R, Koratkar N, Oh I-K (2013) Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251

    Google Scholar 

  • Leroux F, Goward GR, Power WP, Nazar LF (1998) Understanding the nature of low-potential Li uptake into high volumetric capacity molybdenum oxides. Electrochem Solid-State Lett 1:255–258

    Google Scholar 

  • Li X, Bohna PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Google Scholar 

  • Li ZF, Kang ET, Neoh KG, Tan KL (1998) Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. Biomaterials 19:45–53

    Google Scholar 

  • Li G-R, Feng Z-P, Ou Y-N, Wu D, Fu R, Tong Y-X (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26:2209–2213

    Google Scholar 

  • Li S, Luo Y, Lv W, Yu W, Wu S, Hou P, Yang Q, Meng Q, Liu C, Cheng H-M (2011) Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv Energy Mater 1:486–490

    Google Scholar 

  • Li Y, Fu Z-Y, Su B-L (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22:4634–4667

    Google Scholar 

  • Lim B, Kobayashi H, Yu T, Wang J, Kim MJ, Li Z-Y, Rycenga M, Xia Y (2010) Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J Am Chem Soc 132:2506–2507

    Google Scholar 

  • Lin YH, Wei TY, Chien HC, Lu SY (2011) Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv Energy Mater 1:901–907

    Google Scholar 

  • Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010a) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Google Scholar 

  • Liu J, Essner J, Li J (2010b) Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem Mater 22:5022–5030

    Google Scholar 

  • Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia VS, Wang L, Yang W (2011a) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23:4679–4683

    Google Scholar 

  • Liu LQ, Ma WJ, Zhang Z (2011b) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7:1504–1520

    Google Scholar 

  • Liu B, Zhang JT, Wang X, Chen G, Chen D, Zhou C, Shen G (2012a) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Google Scholar 

  • Liu S, Jia H, Han L, Wang J, Gao P, Xu D, Yang J, Che S (2012b) Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv Mater 24:3201–3204

    Google Scholar 

  • Liu B, Soares P, Checkles C, Zhao Y, Yu G (2013a) Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 13:3414–3419

    Google Scholar 

  • Liu C, Tang J, Chen HM, Liu B, Yang P (2013b) A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett 13:2989–2992

    Google Scholar 

  • Liu N, Li W, Pasta M, Cui Y (2014) Nanomaterials for electrochemical energy storage. Front Phys 9:323–350

    Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:735–781

    Google Scholar 

  • Long JW, BĂ©langer D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull 36:513–522

    Google Scholar 

  • Los JH, Fasolino A (2003) Intrinsic long-range bond-order potential for carbon: performance in monte carlo simulations of graphitization. Phys Rev B 68:024107

    Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Google Scholar 

  • Lu A-H, Schmidt W, Spliethoff B, Schuth F (2003) Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv Mater 15:1602–1606

    Google Scholar 

  • Maeda K, Domen K (2011) Oxynitride materials for solar water splitting. MRS Bull 36:25–31

    Google Scholar 

  • Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    Google Scholar 

  • Marks NA (2000) Generalizing the environment-dependent interaction potential for carbon. Phys Rev B 63:035401

    Google Scholar 

  • Marks NA, McKenzie DR, Pailthorpe BA, Bernasconi M, Parrinello M (1996a) Ab initio simulations of tetrahedral amorphous carbon. Phys Rev B Condens Matter 54:9703–9714

    Google Scholar 

  • Marks NA, McKenzie DR, Pailthorpe BA, Bernasconi M, Parrinello M (1996b) Microscopic structure of tetrahedral amorphous carbon. Phys Rev Lett 76:768–771

    Google Scholar 

  • Merchant AR, McKenzie DR, McCulloch DG (2001) Ab initio simulations of amorphous carbon nitrides. Phys Rev B 65:024208

    Google Scholar 

  • Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Google Scholar 

  • Naoi K, Morita M (2008) Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Electrochem Soc Interface 17:44–48

    Google Scholar 

  • Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524

    Google Scholar 

  • Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Google Scholar 

  • Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28

    Google Scholar 

  • Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11:2636–2657

    Google Scholar 

  • Pan L, Yu G, Zhai D, Lee HR, Zhao W-X, Liu N, Wang H, Tee BC-K, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci U S A 109:9287–9292

    Google Scholar 

  • Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Google Scholar 

  • Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gototsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654

    Google Scholar 

  • Peng K-Q, Wang X, Wu X-L, Lee S-T (2009) Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett 9:3704–3709

    Google Scholar 

  • Peng Y, Chen Z, Wen JG, Xiao Q, Weng D, He S, Geng H, Lu Y (2011) Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res 4:216–225

    Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Google Scholar 

  • Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518

    Google Scholar 

  • Qian L, Zhang HF (2011) Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J Chem Technol Biotechnol 86:172–184

    Google Scholar 

  • Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111:7727–7734

    Google Scholar 

  • Ryu JH, Kim JW, Sung YE, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7:A306–A309

    Google Scholar 

  • Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333:49–56

    Google Scholar 

  • Shi J, Hara Y, Sun C, Anderson MA, Wang X (2011) Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett 11:3413–3419

    Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  • Sivakkumar SR, Kim WJ, Choi J-A, MacFarlane DR, Forsyth M, Kim D-W (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sour 171:1062–1068

    Google Scholar 

  • Sleigh AK, McKinnon WR (1991) Structure and electrochemistry of LixWO2 . Solid State Ionics 45:67–75

    Google Scholar 

  • Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138:2334–2342

    Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Google Scholar 

  • Su BL, Sanchez C, Yang XY (2011) Hierarchically structured porous materials: from nanoscience to catalysis, biomedicine, optics and energy. Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany.

    Google Scholar 

  • Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode materia. Solid State Ionics 175:511–515

    Google Scholar 

  • Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882

    Google Scholar 

  • Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Google Scholar 

  • Uang YM, Chou TC (2003) Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosens Bioelectron 19:141–147

    Google Scholar 

  • van Duin ACT, Dasgupta S, Lorant F, Gooddard III WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9936–409

    Google Scholar 

  • Veedu VP, Cao A, Li X-J, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 5:457–462

    Google Scholar 

  • Verbrugge MW, Cheng Y-T (2008) Stress distribution within spherical particles undergoing electrochemical insertion and extraction. Electrochem Soc Trans 16:127–139

    Google Scholar 

  • Verbrugge MW, Cheng Y-T (2009) Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J Electrochem Soc 156:A927–A937

    Google Scholar 

  • Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184

    Google Scholar 

  • Vinu A, Hartmann M (2005) Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. Catal Today 102–103:189–196

    Google Scholar 

  • Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Google Scholar 

  • Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Google Scholar 

  • Wang D-W, Li F, Cheng H-M (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sour 185:1563–1568

    Google Scholar 

  • Wang Z, Liu S, Wu P, Cai C (2009) Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal Chem 81:1638–1645

    Google Scholar 

  • Wang D, Pierre A, Kibria MG, Cui K, Han X, Bevan KH, Guo H, Paradis S, Hakima A-R, Mi Z (2011a) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11:2353–2357

    Google Scholar 

  • Wang W, Epur R, Kumta PN (2011b) Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery. Electrochem Commun 13:429–432

    Google Scholar 

  • Wang Y, Chen K, Mishler J, Cho SC, Adroher XC (2011c) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Google Scholar 

  • Wang X, Peng K-Q, Hu Y, Zhang F-Q, Hu B, Li L, Wang M, Meng X-M, Lee S-T (2014) Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett 14:18–23

    Google Scholar 

  • Wei T, Kumar D, Chen MS, Luo K, Axnanda S, Lundwall M, Goodman DW (2008) Vinyl acetate synthesis over model Pd2Sn bimetallic catalysts. J Phys Chem C 112:8332–8337

    Google Scholar 

  • Wen Z, Li J (2009) Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems. J Mater Chem 19:8707–8713

    Google Scholar 

  • Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255–1259

    Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Google Scholar 

  • Wu J, Yin L (2011) Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater 3:4354–4362

    Google Scholar 

  • Wu J, Zhang JT, Peng Z, Yang S, Wagner FT, Yang H (2010a) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132:4984–4985

    Google Scholar 

  • Wu MS, Guo ZS, Jow JJ (2010b) Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 114:21861–21867

    Google Scholar 

  • Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010c) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Google Scholar 

  • Wu Z, Li W, Xia Y, Webley P, Zhao D (2012) Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. J Mater Chem 22:8835–8845

    Google Scholar 

  • Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013a) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Google Scholar 

  • Wu X-L, Wen T, Guo H-L, Yang S, Wang XC, Xu A-W (2013b) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7:3589–3597

    Google Scholar 

  • Xia BY, Ng W, Wu HB, Wang X, Lou XW (2012) Self-supported interconnected Pt nanoarchitectures as highly stable electrocatalysts for low temperature fuel cells. Angew Chem Int Ed Engl 51:7213–7216

    Google Scholar 

  • Xian Y, Hu Y, Liu F, Xian Y, Wang H, Jin L (2006) Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite. Biosens Bioelectron 21:1996–2000

    Google Scholar 

  • Xu C, Wang H, Shen PK, Jiang SP (2007) Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater 19:4256–4259

    Google Scholar 

  • Yang XY, Li Y, van Tendeloo G, Xiao FS Su BL (2009) One-pot synthesis of catalytically stable and active nanoreactors: encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ordered mesoporous shell system. Adv Mater 21:1368–1372

    Google Scholar 

  • Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11:2949–2954

    Google Scholar 

  • Ye J-S, Cui HF, Liu X, Lim TM, Zhang W-D, Sheu F-S (2005) Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1:560–565

    Google Scholar 

  • Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011a) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442

    Google Scholar 

  • Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011b) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Google Scholar 

  • Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234

    Google Scholar 

  • Zeng QH, Yu AB, Lu GQ, Paul DR (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5:1574–1592

    Google Scholar 

  • Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546

    Google Scholar 

  • Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sour 196:13–24

    Google Scholar 

  • Zhang H, Cao G, Wang ZL, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668

    Google Scholar 

  • Zhang LL, Xiong ZG, Zhao XS (2010) Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano 4:7030–7036

    Google Scholar 

  • Zhang JT, Jiang JW, Zhao XS (2011) Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C 115:6488–54

    Google Scholar 

  • Zhang L, Zhang G, Wu HB, Yu L, Lou XW (2013) Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv Mater 25;2589–2593

    Google Scholar 

  • Zhao Y, Bai H, Hu Y, Li Y, Qu L, Zhang S, Shi G (2011) Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes. J Mater Chem 21:13978–13983

    Google Scholar 

  • Zhao Y, Liu X, Li H, Zhai T, Zhou H (2012) Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem Commun (Camb) 48:5079–5081

    Google Scholar 

  • Zhao Y, Liu B, Pan L, Yu G (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ Sci 6:2856–2870

    Google Scholar 

  • Zhou H, Chen H, Luo S, Chen J, Wei W, Kuang Y (2005) Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosens Bioelectron 20:1305–1311

    Google Scholar 

  • Zhou Z-Y, Huang Z-Z, Chen D-J, Wang Q, Tian N, Sun S-G (2010) High index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed 49:411–414

    Google Scholar 

  • Zhou G-M, Wang D-W, Li F, Zhang L-L, Weng Z, Cheng H-M (2011) The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. New Carbon Mater 26:180–186

    Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Google Scholar 

  • Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J (2014) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157

    Google Scholar 

  • Zhuo K, Jeong MG, Chung CH (2013) Highly porous dendritic Ni-Sn anodes for lithium-ion batteries. J Power Sour 244:601–605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Y., Peng, L., Yu, G. (2015). Electrochemical Hierarchical Composites. In: Kim, CS., Randow, C., Sano, T. (eds) Hybrid and Hierarchical Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12868-9_7

Download citation

Publish with us

Policies and ethics