Skip to main content

Medical Applications of Hierarchical Composites

  • Chapter
  • First Online:
Hybrid and Hierarchical Composite Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonietti RA (2001) Sol–gel nanocoating: an approach to the preparation of structured materials. Chem Mater 13:3272–3282

    Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Google Scholar 

  • Aviv MI (2007) Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J Biomed Mater Res A 83:10–19

    Google Scholar 

  • Bae WG, Kim HN, Park S-H, Jeong HE Suh K-Y (2014) 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv Mater 26(5):675–700

    Google Scholar 

  • Baer E, Hiltner A Morgan RJ (1992) Biological and synthetic hierarchical composites. Phys Today 45(10):60

    Google Scholar 

  • Barkaoui A, Hambli R (2011) Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils. J Appl Biomater Biomech 9(3):199–205

    Google Scholar 

  • Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed Engl 48:5406–5415

    Google Scholar 

  • Bonfiglid M, Jeter WS (1972) Immunological responses to bone. Clinical Orthop Relat Res 87:19–27

    Google Scholar 

  • Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Google Scholar 

  • Bose S, Tarafder S, Edgington J, Bandyopadhyay A (2011) Calcium phosphate ceramics in drug delivery. JOM 63(4):93–98

    Google Scholar 

  • Bradt J-H et al (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11:2694–2701

    Google Scholar 

  • Chang MC, Ikoma T, Kikuchi M, Tanaka J (2001) Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. J Mater Sci Lett 20:1199–1201

    Google Scholar 

  • Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J (2010a) Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4:529–539

    Google Scholar 

  • Chen Y, Chen H, Zhang S, Chen F, Zhang L, Zhang J, Zhu M, Wu H, Guo L, Feng J, Shi J (2010b) Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater 21(2):270–278.

    Google Scholar 

  • Chen Y, Chen H, Ma M, Chen F, Guo L, Zhang L, Shi J (2011) Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/hydrophobic anticancer drug delivery. J Mater Chem 21:5290–5298

    Google Scholar 

  • Chou YF, Huang W, Dunn JC, Miller TA, Wu BM (2005) The effect of biomimetic apatite structure on osteoblasts viability, proliferation, and gene expression. Biomaterials 26:285–295

    Google Scholar 

  • Clarke KI, Graves SE, Wong ATC, Triffitt JT, Francis MJO, Czernuszka JT (1993) Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci: Mater Med 4(2):107–110

    Google Scholar 

  • Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42(21):2350–2365

    Google Scholar 

  • Costantino PD, Friedman CD (1994) Synthetic bone graft substitutes. Otolaryngol Clin North Am 27(5):1037–1074

    Google Scholar 

  • Deng M, James R, Laurencin CT, Kumbar SG (2012) Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. NanoBioscience I(11):3–14

    Google Scholar 

  • Dergunov SA, Pinkhassik E.(2011) Synergistic co-entrapment and triggered release in hollow nanocapsules with uniform nanopores. J Am Chem Soc 133(49):19656–19659

    Google Scholar 

  • Doi Y, Horiguchi T, Moriwaki Y, Kitago H, Kajimoto T, Iwayama Y (1996) Formation of apatite–collagen complexes. J Biomed Mater Res 31:43–49

    Google Scholar 

  • Dong Q, Su H, Cao W, Zhang D, Guo Q, Lai Y (2007) Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J Solid State Chem 180:949–955

    Google Scholar 

  • Dong XN, Guda T, Millwater HR, Wang X.(2009) Probabilistic failure analysis of bone using a finite element model of mineral–collagen composites. J Biomech 42(3):202–209

    Google Scholar 

  • Du C, Cui F, Zhu XD, de Groot K.(1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 44:407–415

    Google Scholar 

  • Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot K (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50:518–527

    Google Scholar 

  • Ehrlich H (2010) Biological materials of marine origin: invertebrates. Biologically-inspired systems. Springer, Dordrecht, pp 25–122

    Google Scholar 

  • Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V (2010) Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem 20(1):18–23

    Google Scholar 

  • Fedorovich NE, De Wijn JR, Verbout AJ (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14:127–133

    Google Scholar 

  • Feng L et al (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Google Scholar 

  • Fratzl P et al (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14(14):2115–2123

    Google Scholar 

  • Fujisawa R et al (1996) Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochim Biophys Acta 1292(1):53–60.

    Google Scholar 

  • Furuichi K, Oaki Y, Ichimiya H et al (2006) Preparation of hierarchically organized calcium phosphate–organic polymer composites by calcification of hydrogel. Sci Technol Adv Mater 7(2):219–225

    Google Scholar 

  • Gee SH, Hong YK (2003) Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications. J App Phys 93:7560

    Google Scholar 

  • Ghanbari J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42(10):1560–1565

    Google Scholar 

  • Girija EK, Yokogawa Y, Nagata F (2004) Apatite formation on collagen fibrils in the presence of polyacrylic acid. J Mater Sci Mater Med 15(5):593–599

    Google Scholar 

  • Goldberg VM (1992) Natural history of autografts and allografts. In: Older MWJ (ed) Bone implant grafting. Springer, London, pp 9–12

    Google Scholar 

  • Habraken WJ, Wolke JG, Jansen JA (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248

    Google Scholar 

  • Hambli R, Barkaoui A (2012) Physically based 3D finite element model of a single mineralized collagen microfibril. J Theor Biol 30(1):28–41

    Google Scholar 

  • Hamed EY (2010) Multiscale modeling of elastic properties of trabecular bone. 6th World Congress of Biomechanics (WCB 2010)

    Google Scholar 

  • Hamed E, Jasiuk I (2012) Elastic modeling of bone at nanostructural level. Mater Sci Eng R 73(3):27–49

    Google Scholar 

  • Hench LS (1971) Bonding mechanism at the interface of ceramics prosthetic materials. J Biomed Mater Res Symp 2 5:117–141

    Google Scholar 

  • Hench LL (2006) The story of bioglass. J Mater Sci Mater Med.17:967–978

    Google Scholar 

  • Huang YK (2013) Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng: C 33(6):3220–3229

    Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Google Scholar 

  • Imai H, Tatara S (2003) Formation of calcium phosphate having a hierarchically laminated architecture through periodic precipitation in organic gel. Chem Commun (Camb) 15:1952–1953

    Google Scholar 

  • Izquierdo-Barba I, Arcos D, Sakamoto Y et al (2008a) High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater 20(9):3191–3198

    Google Scholar 

  • Izquierdo-Barba I, Colilla M, Vallet-Regí M (2008b) Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomater 2008 106970.

    Google Scholar 

  • Jan E, Kotov N (2007) Successful differentiation of mouse neural stem cells on layer by layer assembled single walled carbon nanotube composite. Nano Lett 7:1123–1128

    Google Scholar 

  • Jin Y et al (2009) (Protamine/dextran sulfate)6 microcapules templated on biocompatible calcium carbonate microspheres. Colloids Surfaces A: Physicochem Eng Asp 342(1):40–45

    Google Scholar 

  • Kakizawa Y et al (2004) Size-controlled formation of a calcium phosphate-based organic–inorganic hybrid vector for gene delivery using poly (ethylene glycol)-block-poly (aspartic acid). Adv Mater 16:699–702

    Google Scholar 

  • Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131:111002

    Google Scholar 

  • Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition forconstruction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11:9–17

    Google Scholar 

  • Kim HN (2012) Effect of orientation and density of nanotopography in dermal wound healing. Biomaterials 33(34):8782–8792

    Google Scholar 

  • Kim HN et al (2012) Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng 40:1339–1355

    Google Scholar 

  • Kim HN et al (2013) Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 65:536–558

    Google Scholar 

  • Kischi M, Itoh S (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711

    Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Google Scholar 

  • Kreetachat T, Kruenate J, Suwannahong K (2013) Preparation of Tio2/Bio-composite film by sol-gel method in VOCs photocatalytic degradation process. Appl Mech Mater 390:552–556

    Google Scholar 

  • Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447

    Google Scholar 

  • Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–544

    Google Scholar 

  • Lee HJ (2010) Spatially mineralized self-assembled polymeric nanocarriers with enhanced robustness and controlled drug-releasing property. Chem Commun 46(3):377–379

    Google Scholar 

  • Lees S, Davidson CL (1977) The role of collagen in the elastic proper-ties of calcified tissues. J Biomech 10:473–486

    Google Scholar 

  • Li X, Shi J, Dong X, Zhang L, Zeng H (2008) A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J Biomed Mater Res A 84:84–91

    Google Scholar 

  • Liao SS et al (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res Part B: Appl Biomater 69(2):158–165

    Google Scholar 

  • Liu H, Webster TJ (2010) Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J Biomed Mater Res A 93(3):1180–1192

    Google Scholar 

  • Lopez-Noriega A, Ruiz-Hernandez E, Stevens SM et al (2009) Mesoporous microspheres with doubly ordered core-shell structure. Chem Mater 21:218–20

    Google Scholar 

  • Luo Y, Wu C, Lode A, Gelinsky M (2013) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5(1):015005

    Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Google Scholar 

  • Maher PS, Keatch R, Donnelly K (2009) Construction of 3D biological matrices using rapid prototyping technology. Rapid Prototype J 15:204–210

    Google Scholar 

  • Mann S (2001) Biomineralization. Oxford University Press, New York

    Google Scholar 

  • Meyers MA, Chen P-Y, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206

    Google Scholar 

  • Michalske TA, Bunker BC, Keefer KD (1990) Mechanical properties and adhesion of hydrated glass surface layers. J Non-Cryst Solids 120(1–3):138–151

    Google Scholar 

  • Miyamoto Y, Ishikawa K, Takechi M et al (1998) Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 19:707–715

    Google Scholar 

  • Murphy WL, Mooney DJ (2002) Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J Am Chem Soc 124(9):1910–1917

    Google Scholar 

  • Murphy WL, Kohn DH, Mooney DJ.(2000) Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res 50(1):50–58

    Google Scholar 

  • Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406

    Google Scholar 

  • (n.d.) http://en.wikipedia.org/wiki/Biomaterial

  • Ngiam M et al (2009) The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45(1):4–16

    Google Scholar 

  • Niu LN et al (2013) Biomimetic silicification of demineralized hierarchical collagenous tissues. Biomacromolecules 14(5):1661–1668

    Google Scholar 

  • Oliveira AL, Mano JF, Reis RL (2003) Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Curr Opin Solid State Mater Sci 7(4–5):309–318

    Google Scholar 

  • Pham HH, Luo P, Génin F, Dash AK (2002) Synthesis and characterization of hydroxyapatite-ciprofloxacin delivery systems by precipitation and spray drying technique. AAPS PharmSciTech 3(1):1–9

    Google Scholar 

  • Qiu PD (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303

    Google Scholar 

  • Rebollar E et al (2008) Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29:1796–1806

    Google Scholar 

  • Rhee S-H, Lee JD, Tanaka J (2000) Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J Am Ceram Soc 83:2890–2892

    Google Scholar 

  • Rocha LB, Goissis G, Rossi MA (2002) Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 23:449–456

    Google Scholar 

  • Roche S, Ronzière M et al (2001) Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials 22:9–18

    Google Scholar 

  • Sanchez C, Julián C, Belleville P et al (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Google Scholar 

  • Sanchez C et al (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753

    Google Scholar 

  • Shen X, Chen L et al (2011) A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. J Mater Sci Mater Med 22:299–305

    Google Scholar 

  • Shi QH, Wang JF, Zhang JP et al (2006). Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation. Adv Mater 18:1038

    Google Scholar 

  • Shi J et al (2013) Micro/nanohybrid hierarchical poly (N-isopropylacrylamide)/calcium carbonate composites for smart drug delivery. J Appl Polym Sci 129(2):577–584

    Google Scholar 

  • Shor L, Güçeri S, Wen X et al (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28:5291–5297

    Google Scholar 

  • Singh R et al (2010) Hierarchically structured titanium foams for tissue scaffold applications. Acta Biomater 6(12):4596–4604

    Google Scholar 

  • Sobral JM, Caridade SG, Sousa RA et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7:1009–1018

    Google Scholar 

  • Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl 47:1382–1395

    Google Scholar 

  • Stegemann BD (2013) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater

    Google Scholar 

  • Su B-L, Sanchez C, Yang X-Y (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley, Weinheim

    Google Scholar 

  • Taguchi T, Aiko K, Akashi M (1998) Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chem Lett 27(8):711–712

    Google Scholar 

  • Taguchi T, Kishida A, Akashi M (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process. II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. J Biomater Sci Polym Ed 1D:331–339

    Google Scholar 

  • Tan J, Saltzman WM (2004) Biomaterials with hierarchically defined micro-and nanoscale structure. Biomaterials 25(17):3593–3601

    Google Scholar 

  • Tanahashi M et al (1994) Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc 77(11):2805–2808

    Google Scholar 

  • Teixeira AI et al (2003) Epithelial contact guidance on well-defined micro-and nanostructured substrates. J Cell Sci 116(10):1881–1892

    Google Scholar 

  • Teixeira AI et al (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27(21):3945–3954

    Google Scholar 

  • Vallet-Regí M, Ragel CV, Salinas AJ (2003) Glasses with medical applications. Eur J Inorg Chem 2003(6):1029–1042

    Google Scholar 

  • Wakayama H et al (2006) CaCO3/biopolymer composite films prepared using supercritical CO2. Ind Eng Chem Res 45:3332–3334

    Google Scholar 

  • Weadock K, Olson R, Silver FH (1983) Evaluation of collagen crosslinking techniques. Biomater Med Devices Artif Organs 11:293–318

    Google Scholar 

  • Wei GB, Ma PX (2004a) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Google Scholar 

  • Wei W et al (2008) Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc 130(47):15808–15810

    Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206:262–266

    Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Google Scholar 

  • Weiner S et al (2006) Mineralized biological materials: a perspective on interfaces and interphases designed over millions of years. Biointerphases 1(2)12–14

    Google Scholar 

  • Wicklein B et al (2013) Hierarchically structured bioactive foams based on polyvinyl alcohol–sepiolite nanocomposites. J Mater Chem B 1(23):2911–2920

    Google Scholar 

  • Wu C, Luo Y (2011) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 7:2644–2650

    Google Scholar 

  • Wu C, Chang J, Zhai W et al (2007) A novel bioactive porous bredigite (Ca(7)MgSi(4)O(16)) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med 18:857–864

    Google Scholar 

  • Wu C et al (2010) Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J Biomed Mater Res A 95(2):476–485

    Google Scholar 

  • Xiu Y et al (2007) Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett 7:3388–3393

    Google Scholar 

  • Xu S, Lin K, Wang Z et al (2008) Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596

    Google Scholar 

  • Yan X, Yu C, Zhou X et al (2004) Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed Engl 43:5980–5984

    Google Scholar 

  • Yim EK et al (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31(6):1299–1306

    Google Scholar 

  • Yin YJ, Zhao F, Yao KD et al (2000) Preparation and characterization of hydroxyapatite/chitosan–gelatin network composite. J Appl Polym Sci 77:2929–2938

    Google Scholar 

  • Yokogawa Y et al (1998) Calcium phosphate compound-cellulose fiber composite material prepared in soaking medium at 36.5–60 ℃. J Mater Res 13(4):922–925

    Google Scholar 

  • Yuan XA (2001) Formation of bone-like apatite on poly (L-lactic acid) fibers by a biomimetic process. J Biomed Mater Res 57(1):140–150

    Google Scholar 

  • Yuan F et al (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10(2):147–160

    Google Scholar 

  • Yun HS, Kim S, Hyeon YT (2007) Highly ordered mesoporous bioactive glasses with Im3m symmetry. Mater Lett 61:4569–4572

    Google Scholar 

  • Yun H, Kim S, Hyeon YT (2011) Bioactive glass–poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Mater Sci Eng C 31:198–205

    Google Scholar 

  • Zhang M, Kataoka K (2009) Nano-structured composites based on calcium phosphate for cellular delivery of therapeutic and diagnostic agents. Nano Today 4(6):508–517

    Google Scholar 

  • Zhang W, Liao SS, Cui FZ (2003) Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 15:3221–3226

    Google Scholar 

  • Zhang L-J, Feng X-S, Liu H-G, Qian D-J, Zhang L et al (2004) Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater Lett 58:719–722

    Google Scholar 

  • Zhao Y et al (2009) Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol Bioeng 102(2):624–631

    Google Scholar 

  • Zhao M-Q et al (2012) Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv Funct Mater 22 (4):675–694

    Google Scholar 

  • Zhou Y et al (2013) Asymmetric PSt-EA/Ni-silicate hollow microsphere with a hierarchical porous shell. J Mater Chem B 1(10):1414–1420

    Google Scholar 

  • Zorlutuna P et al (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24(12):1782–1804

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debrupa Lahiri .

Editor information

Editors and Affiliations

Conclusions

Conclusions

Nature has many creatures with highly organized hierarchical architecture ranging from the nano- to macro-length scale. An in-depth understanding of the key role of natural hierarchy is essential for developing artificial replacements. During the past few decades, a considerable effort has been made to construct the ideal hierarchical structure through different composite approaches to meet the advanced medical demand, which has achieved partial success. Material scientists are still searching for the most suitable composite materials system to develop artificial biomimetic structures.

Directing the nature-inspired technologies toward the development of hierarchical composites with permutation and combination of different material systems through innovative processing routes, and transitioning the achievements from the laboratory level into the real world by counterbalancing the limitations is an attractive and challenging job. This overview was aimed at identifying the direction and scope of the development of artificial hierarchical composite structures with the best possible functionalities for biomedical applications.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar R, M., Agrawal, K., Lahiri, D. (2015). Medical Applications of Hierarchical Composites. In: Kim, CS., Randow, C., Sano, T. (eds) Hybrid and Hierarchical Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12868-9_6

Download citation

Publish with us

Policies and ethics