Skip to main content

Multiferroic Magnetoelectric Composites/Hybrids

  • Chapter
  • First Online:
Book cover Hybrid and Hierarchical Composite Materials

Abstract

The multiferroic magnetoelectric (ME) effect describes the coupling between the electric and magnetic fields, and is defined as a generated electric polarization P in response to an externally applied magnetic field H (direct ME effect), or an induced magnetization M with an applied electric field E (converse ME effect). Unfortunately, the ME coupling of all the known single-phase materials is usually small at room temperature to be practically applicable. Alternatively, multiferroic composites (ferroelectric and ferri/ferromagnetic phases) typically yield a giant ME coupling response above room temperature, which makes them attractive for technological applications. In the composites, the ME effect is generated as a product property of the magnetostrictive effect (magnetic/mechanical effect) and piezoelectric effect (mechanical/electric effect). To achieve a large ME response, piezoelectric constituent with a high piezoelectric coefficient, magnetostrictive constituent with a high piezomagnetic coefficient, and good coupling between the piezoelectric and magnetostrictive constituent are required. In this chapter, we begin with a brief overview of the development of each material’s constituent (piezoelectrics and magnetostriction) providing a list of state-of-the-art piezoelectric and magnetostrictive materials in multiferroic ME hybrid. Next, a discussion is provided on the composite structure and interface elastic coupling between the piezoelectric and magnetostrictive phases. After that we describe the fabrication process of several important ME hybrids with different phase connectivity, interface, and configuration. Considering the importance of nanostructure and 2–2-type ME composite, the scaling effect and theoretical modeling for these architectures are presented in some detail. Following these sections, some of the potential applications for ME hybrids are reviewed and illustrated by examples. Lastly, the chapter is concluded with a brief summary and future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α ME :

Magnetoelectric coefficient

BT:

Barium titanate, BaTiO3

d :

Piezoelectric charge coefficient

E :

Electric field

EBSD:

Electron backscatter diffraction

E c :

Coercive electric field

EDS:

Energy-dispersive X-ray spectroscopy

EMR:

Electromechanical resonance

ε :

Dielectric permittivity

f c :

Resonance frequency

g :

Piezoelectric voltage coefficient

H :

Magnetic field

IDE:

Interdigitated electrode

k :

Electromechanical coupling coefficient

λ :

Magnetostriction coefficient

LTCC:

Low-temperature co-fired ceramics

M :

Magnetization

ME:

Magnetoelectric

MFC:

Macro-fiber composites

MPB:

Morphotropic phase boundary

μ :

Magnetic permeability

P :

Polarization

PFM:

Piezoresponse force microscopy

PLD:

Pulsed laser deposition

PMN–PT:

Lead magnesium niobate–lead titanate, Pb(Mg1/3Nb2/3)O3–PbTiO3

PPT:

Polymorphic phase boundary

P r :

Remnant polarization

PVDF:

Polyvinylidene difluoride

PZT:

Lead zirconate titanate, Pb(Zr, Ti)O3

q :

Piezomagnetic coefficient

Q m :

Mechanical quality factor

SEM:

Scanning electron microscopy

tanδ:

Dielectric loss

T c :

Curie temperature

T O-T :

Orthorhombic-tetragonal phase transition temperature

XRD:

X-ray diffraction

Z :

Acoustic impedance

References

  • Bichurin MI, Petrov VM, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68: 054402

    Google Scholar 

  • Bichurin MI, Petrov VM, Averkin SV, Filippov AV (2010a) Electromechanical resonance in magnetoelectric layered structures. Phys Solid State 52(10):2116–2122

    Article  Google Scholar 

  • Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010b) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J Appl Phys 107: 053904

    Google Scholar 

  • Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010c) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part II: magnetic and magnetoacoustic resonance ranges. J Appl Phys 107: 053905

    Google Scholar 

  • Brown WF, Hornreich RM, Shtrikman S (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168(2):574–577

    Article  Google Scholar 

  • Cho KH, Park CS, Priya S (2010) Effect of intensive and extensive loss factors on the dynamic response of magnetoelectric laminates. Appl Phys Lett 97: 182902

    Google Scholar 

  • Clarke R, Whatmore WR (1976) The growth and characterization of Pzt. J Cryst Growth 33:29–38

    Article  Google Scholar 

  • Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267–1324

    Article  Google Scholar 

  • Deng C, Zhang Y, Ma J, Lin Y, Nan C-W (2008) Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3-NiFe2O4 composite thin films. Acta Mater 56(3):405–412

    Article  Google Scholar 

  • Dong SX, Li JF, Viehland D (2003) Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans Ultrason Ferroelectr Freq Control 50(10):1253–1261

    Article  Google Scholar 

  • Dong SX, Li JF, Viehland D (2004) A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O-3-PbTiO3 laminate composite. Appl Phys Lett 85(22):5305–5306

    Article  Google Scholar 

  • Dong SX, Zhai JY, Li JF, Viehland D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl Phys Lett 89: 252904

    Google Scholar 

  • Engdahl G (2000) Handbook of giant magnetostrictive materials. Academic Press, San Diego

    Google Scholar 

  • Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423–5426

    Article  Google Scholar 

  • Harshe GR (1991) Magnetoelectric effect in piezoelectric-magnetostrictive composites, vol 9204210. The Pennsylvania State University, Ann Arbor, pp 299–99

    Google Scholar 

  • Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104(29):6694–6709

    Article  Google Scholar 

  • Huan Y, Wang XH, Fang J, Li LT (2014) Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J Eur Ceram Soc 34(5):1445–1448

    Article  Google Scholar 

  • Islam RA (2008) Composition-microstructure-property relationships in dual phase bulk magnetoelectric composite, vol 3310386. The University of Texas at Arlington, Ann Arbor, pp 244

    Google Scholar 

  • Islam RA, Bedekar V, Poudyal N, Liu JP, Priya S (2008) Magnetoelectric properties of core-shell particulate nanocomposites. J Appl Phys 104: 104111

    Google Scholar 

  • Israel C, Mathur ND, Scott JF (2008) A one-cent room-temperature magnetoelectric sensor. Nat Mater 7(2):93–94

    Article  Google Scholar 

  • Jaffe B (1971) Piezoelectric ceramics. Academic Press, London, p ix, 317

    Google Scholar 

  • Laletin VM, Paddubnaya N, Srinivasan G, De Vreugd CP, Bichurin MI, Petrov VM, Filippov DA (2005) Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Appl Phys Lett 87: 222507

    Google Scholar 

  • Leontsev SO, Eitel RE (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mat 11: 044302

    Google Scholar 

  • Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-Free ceramics. Phys Rev Lett 103: 257602

    Google Scholar 

  • Liu D, Yan YK, Zhou HP (2007) Synthesis of micron-scale platelet BaTiO3. J Am Ceram Soc 90(4):1323–1326

    Article  Google Scholar 

  • Liu R, Zhao Y, Huang R, Zhao Y, Zhou H (2010) Multiferroic ferrite/perovskite oxide core/shell nanostructures. J Mater Chem 20(47):10665–10670

    Article  Google Scholar 

  • Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J Inorg Nucl Chem 9(2):113–123

    Article  Google Scholar 

  • Ma J, Shi Z, Nan C-W (2007) Magnetoelectric properties of composites of single Pb(Zr, Ti)O-3 rods and Terfenol-D/epoxy with a single-period of 1–3-type structure. Adv Mater 19(18):2571–2573

    Article  Google Scholar 

  • Ma J, Hu JM, Li Z, Nan CW (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23(9):1062–10687

    Article  Google Scholar 

  • Mandal SK, Sreenivasulu G, Petrov VM, Srinivasan G (2010) Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl Phys Lett 96: 192502

    Google Scholar 

  • Martin LW (2010) Engineering functionality in the multiferroic BiFeO3—controlling chemistry to enable advanced applications. Dalton Trans 39(45):10813–10826

    Article  Google Scholar 

  • Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State 29(2):45–96

    Article  Google Scholar 

  • Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D, Ahn CH, Triscone J-M (2009) Magnetoelectric effects in complex oxides with competing ground states. Adv Mater 21(34):3470

    Article  Google Scholar 

  • Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37(1):1–116

    Article  Google Scholar 

  • Nan CW, Li M, Huang JH (2001) Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys Rev B 63: 144415

    Google Scholar 

  • Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103: 031101

    Google Scholar 

  • Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford

    Google Scholar 

  • Newnham RE, Skinner DP, Cross LE (1978) Connectivity and Piezoelectric-Pyroelectric composites. Mater Res Bull 13(5):525–536

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press; Oxford University Press, Oxford

    Google Scholar 

  • O’Dell TH (1963) The field invariants in a magnetoelectric medium. Phila Mag 8:411–418

    Article  Google Scholar 

  • Onuta T-D, Wang Y, Long CJ, Takeuchi I (2011) Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl Phys Lett 99: 203506

    Google Scholar 

  • Park CS, Priya S (2011) Cofired magnetoelectric laminate composites. J Am Ceram Soc 94(4):1087–1095

    Article  Google Scholar 

  • Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Article  Google Scholar 

  • Park C-S, Ryu J, Choi J-J, Park D-S, Ahn C-W, Priya S (2009) Giant Magnetoelectric coefficient in 3–2 nanocomposite thick films. Japanese J Appl Phys 48: 080204

    Google Scholar 

  • Petrov VM, Srinivasan G, Bichurin MI, Galkina TA (2009) Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. J Appl Phys 105: 063911

    Google Scholar 

  • Piorra A, Jahns R, Teliban I, Gugat JL, Gerken M, Knoechel R, Quandt E (2013) Magnetoelectric thin film composites with interdigital electrodes. Appl Phys Lett 103: 032902

    Google Scholar 

  • Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19(1):149–166

    Article  Google Scholar 

  • Priya S, Ryu J, Park CS, Oliver J, Choi JJ, Park DS (2009) Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes. Sensors 9(8):6362–6384

    Article  Google Scholar 

  • Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR (1998) Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc 81(3):677–688

    Article  Google Scholar 

  • Ryu J, Carazo AV, Uchino K, Kim HE (2001) Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-Ferrite particulate composites. J Electroceram 7(1):17–24

    Article  Google Scholar 

  • Ryu H, Murugavel P, Lee JH, Chae SC, Noh TW, Oh YS, Kim HJ, Kim KH, Jang JH, Kim M, Bae C, Park JG (2006) Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O-3-NiFe2O4 composite films. Appl Phys Lett 89: 102907

    Google Scholar 

  • Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wun-Fogle M (1994) Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J Appl Phys 75(10):5656–5658

    Article  Google Scholar 

  • Schileo G (2013) Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Prog Solid State Chem 41(4):87–98

    Article  Google Scholar 

  • Scott JF (2012) Applications of magnetoelectrics. J Mater Chem 22(11):4567–4574

    Article  Google Scholar 

  • Shi Z, Nan CW, Zhang J, Cai N, Li JF (2005) Magnetoelectric effect of Pb(Zr, Ti)O-3 rod arrays in a (Tb, Dy)Fe-2/epoxy medium. Appl Phys Lett 87: 012503

    Google Scholar 

  • Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309(5733):391–392

    Article  Google Scholar 

  • Srinivasan G (2010) Magnetoelectric Composites, pp 153–78. in Annual Review of Materials Research, Vol 40, Annual Review of Materials Research. Annual Reviews, Palo Alto, 2010

    Google Scholar 

  • Srinivasan G, Sun NX (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02(03):1240004

    Article  Google Scholar 

  • Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64: 214408

    Google Scholar 

  • Srinivasan G, Rasmussen ET, Levin BJ, Hayes R (2002) Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys Rev B 65: 134402

    Google Scholar 

  • Uchino K (2010) Ferroelectric devices, 2nd ed. CRC, Boca Raton, p xix, 347

    Google Scholar 

  • Uchino K, Sadanaga E, Hirose T (1989) Dependence of the crystal-structure on particle-size in Barium-Titanate. J Am Ceram Soc 72(8):1555–1558

    Article  Google Scholar 

  • Vaz CAF, Hoffman J, Anh CH, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22(26–27):2900–2918

    Article  Google Scholar 

  • Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58(4):321–448

    Article  Google Scholar 

  • Wang YJ, Gray D, Berry D, Gao JQ, Li MH, Li JF, Viehland D (2011) An extremely low equivalent magnetic noise magnetoelectric sensor. Adv Mater 23(35):4111

    Article  Google Scholar 

  • Wang YJ, Gray D, Berry D, Li MH, Gao JQ, Li JF, Viehland D (2012) Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures. J Alloys Compd 513:242–244

    Article  Google Scholar 

  • Wang YJ, Gao JQ, Li MH, Shen Y, Hasanyan D, Li JF, Viehland D (2014) A review on equivalent magnetic noise of magnetoelectric laminate sensors. Philos Trans R Soc a-Math Phys Eng Sci 372: 20120455

    Google Scholar 

  • Wilkie WK, Bryant RG, High JW, Fox RL, Hellbaum RF, Jalink A, Little BD, Mirick PH (2000) Low-cost piezocomposite actuator for structural control applications. pp. 323–334. in smart structures and material 2000: industrial and commercial applications of smart structures technologies, Vol. 3991. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Edited by J. H. Jacobs, 2000.

    Google Scholar 

  • Xing Z, Dong S, Zhai J, Yan L, Li J, Viehland D (2006) Resonant bending mode of Terfenol-D/steel/Pb(Zr, Ti)O3 magnetoelectric laminate composites. Appl Phys Lett 89: 112911

    Google Scholar 

  • Yan Y, Cho K-H, Priya S (2012a) Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics. Appl Phys Lett 100: 132908

    Google Scholar 

  • Yan YK, Wang YU, Priya S (2012b) Electromechanical behavior of 001-textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramics. Appl Phys Lett 100: 192905

    Google Scholar 

  • Yan Y, Zhou Y, Gupta S, Priya S (2013a) Fatigue mechanism of textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramics. Appl Phys Lett 103: 082906

    Google Scholar 

  • Yan YK, Cho KH, Maurya D, Kumar A, Kalinin S, Khachaturyan A, Priya S (2013b) Giant energy density in 001 -textured Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl Phys Lett 102: 042903

    Google Scholar 

  • Yan YK, Zhou Y, Priya S (2013c) Giant self-biased magnetoelectric coupling in co-fired textured layered composites. Appl Phys Lett 102: 052907

    Google Scholar 

  • Yan Y, Zhou Y, Priya S (2014) Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O-3-PbTiO3 < 001 > (C) radially textured cylinders. Appl Phys Lett 104: 012910

    Google Scholar 

  • Zhai J, Xing Z, Dong S, Li J, Viehland D (2008) Thermal noise cancellation in symmetric magnetoelectric bimorph laminates. Appl Phys Lett 93: 072906

    Google Scholar 

  • Zhang SJ, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111: 031301

    Google Scholar 

  • Zhang SJ, Xia R, Shrout TR (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19(4):251–257

    Article  Google Scholar 

  • Zheng H, Wang J, Mohaddes-Ardabili L, Wuttig M, Salamanca-Riba L, Schlom DG, Ramesh R (2004) Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4 nanostructures. Appl Phys Lett 85(11):2035–2037

    Article  Google Scholar 

  • Zhou Y, Apo DJ, Priya S (2013) Dual-phase self-biased magnetoelectric energy harvester. Appl Phys Lett 103: 192909

    Google Scholar 

Download references

Acknowledgment

Y.Y. acknowledges the financial support from Office of Basic Energy Science, Department of Energy. S.P. would like to acknowledge the support from Office of Naval Research through Center for Energy Harvesting Materials and Systems (CEHMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongke Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, Y., Priya, S. (2015). Multiferroic Magnetoelectric Composites/Hybrids. In: Kim, CS., Randow, C., Sano, T. (eds) Hybrid and Hierarchical Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12868-9_4

Download citation

Publish with us

Policies and ethics