Skip to main content

Polymer-Tethered Nanoparticle Materials—An Emerging Platform for Multifunctional Hybrid Materials

  • Chapter
  • First Online:
Hybrid and Hierarchical Composite Materials

Abstract

The grafting of polymeric chains to inorganic (as well as organic) particle interfaces has become an indispensable tool to engineer the physicochemical and/or biochemical properties of material interfaces. For example, polymer grafting is ubiquitously being used to compatibilize particles to polymer matrices to augment the properties of polymers in applications such as biomedical devices, lightweight aircraft wings, energy generation and storage, and for separation and environmental remediation to name a few. The recent emergence of surface-initiated controlled radical polymerization has further expanded the scope of polymer-grafted particulate materials as the precise control of the structure of the polymer grafts, offers new opportunities to tailor the properties of polymer-grafted particle systems. This chapter summarizes recent developments in synthesis of polymer-tethered nanoparticle interfaces that have afforded this fine control in the structure and properties of the resultant composite. Particular emphasis is given to the concept of “one-component hybrid materials”—that is the ability to synthesize multifunctional nanocomposite materials by the self-assembly of polymer-tethered particle systems. The role of polymer-graft modification on the interaction, dynamics, and assembly of particle brush materials is discussed to provide the context to showcase studies that have demonstrated the opportunity to harness the precision-engineered polymer-grafted particle systems for the fabrication of innovative nanocomposite material technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu CMR, Mendonca PV, Serra AC, Popov AV, Matyjaszewski K, Guliashvili T, Coelho JFJ (2012) Inorganic sulfites: efficient reducing agents and supplemental activators for atom transfer radical polymerization. ACS Macro Lett 1(11):1308–1311. doi:10.1021/mz300458x

    Article  Google Scholar 

  • Advincula R (2006) Polymer brushes by anionic and cationic surface-initated polymerization (SIP). In: Jordan R (ed) Advances in polymer science: surface initiated polymerization, vol 197. Springer, Berlin, pp 107–136

    Google Scholar 

  • Agarwal P, Chopra M, Archer LA (2011) Nanoparticle netpoints for shape- memory polymers. Angew Chem-Int Ed 50(37):8670–8673. doi:10.1002/anie.201103908

    Article  Google Scholar 

  • Alexander S (1977) Adsorption of chain molecules with polar head: a scaling approach. J De Phys 38(8):983–987. doi:10.1051/jphys:01977003808098300

    Article  Google Scholar 

  • Ball RC, Marko JF, Milner ST, Witten TA (1991) Polymers grafted to a convex surface. Macromolecules 24(3):693–703. doi:10.1021/ma00003a011

    Article  Google Scholar 

  • Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527. doi:10.1021/cr900045a

    Article  Google Scholar 

  • Binder K, Milchev A (2012) Polymer brushes on flat and curved surfaces: how computer simulations can help to test theories and to interpret experiments. J Polym Sci Part B-Polym Phys 50(22):1515–1555. doi:10.1002/polb.23168

    Article  Google Scholar 

  • Bombalski L, Dong HC, Listak J, Matyjaszewski K, Bockstaller MR (2007) Null-scattering hybrid particles using controlled radical polymerization. Adv Mater 19(24):4486–4490. doi:10.1002/adma.200700928

    Article  Google Scholar 

  • Bourlinos AB, Herrera R, Chalkias N, Jiang DD, Zhang Q, Archer LA, Giannelis EP (2005) Surface-functionalized nanoparticles with liquid-like behavior. Adv Mater 17(2):234–237. doi:10.1002/adma.2004001060

    Article  Google Scholar 

  • Bourlinos AB, Giannelis EP, Zhang Q, Archer LA, Floudas G, Fytas G (2006) Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur Phys J E 20(1):109–117. doi:10.1140/epje/i2006-10007-3

    Article  Google Scholar 

  • Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32(1):93–146. doi:10.1016/j.progpolymsci.2006.11.002

    Article  Google Scholar 

  • Carrot G, Diamanti S, Manuszak M, Charleux B, Vairon IP (2001) Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles. J Polym Sci Part A-Polym Chem 39(24):4294–4301. doi:10.1002/pola.10085

    Article  Google Scholar 

  • Choi J, Dong H, Matyjaszewski K, Bockstaller MR (2010) Flexible particle array structures by controlling polymer graft architecture. J Am Chem Soc 132(36):12537–12539. doi:10.1021/ja105189s

    Article  Google Scholar 

  • Choi J, Hui CM, Pietrasik J, Dong HC, Matyjaszewski K, Bockstaller MR (2012) Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. Soft Matter 8(15):4072–4082. doi:10.1039/c2sm06915f

    Article  Google Scholar 

  • Choi J, Hui CM, Schmitt M, Pietrasik J, Margel S, Matyjazsewski K, Bockstaller MR (2013) Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir 29(21):6452–6459. doi:10.1021/la4004406

    Article  Google Scholar 

  • Dan N, Tirrell M (1992) Polymers tethered to curved interfaces-a self-consistent-field analysis. Macromolecules 25(11):2890–2895. doi:10.1021/ma00037a016

    Article  Google Scholar 

  • Daoud M, Cotton JP (1982) Star shaped polymers—a model for the conformation and its concentration dependence. J De Phys 43(3):531–538. doi:10.1051/jphys:01982004303053100

    Article  Google Scholar 

  • de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13(5):1069–1075. doi:10.1021/ma60077a009

    Article  Google Scholar 

  • Dong HC, Zhu MZ, Yoon JA, Gao HF, Jin RC, Matyjaszewski K (2008) One-pot synthesis of robust core/shell gold nanoparticles. J Am Chem Soc 130(39):12852–12853. doi:10.1021/ja8038097

    Article  Google Scholar 

  • Dukes D, Li Y, Lewis S, Benicewicz B, Schadler L, Kumar SK (2010) Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 43(3):1564–1570. doi:10.1021/ma901228t

    Article  Google Scholar 

  • Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22. doi:10.1039/b210143m

    Article  Google Scholar 

  • Fernandes NJ, Koerner H, Giannelis EP, Vaia RA (2013) Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Commun 3(1):13–29. doi:10.1557/mrc.2013.9

    Article  Google Scholar 

  • Gao X, Feng W, Zhu SP, Sheardown H, Brash JL (2010) Kinetic modeling of surface-initiated atom transfer radical polymerization. Macromol React Eng 4(3–4):235–250. doi:10.1002/mren.200900063

    Article  Google Scholar 

  • Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6(8):557–562. doi:10.1038/nmat1949

    Article  Google Scholar 

  • Goel V, Pietrasik J, Dong H, Sharma J, Matyjaszewski K, Krishnamoorti R (2011) Structure of polymer tethered highly grafted nanoparticles. Macromolecules 44(20):8129–8135. doi:10.1021/ma200621r

    Article  Google Scholar 

  • Hamer MJ, Iyer BVS, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2014) Modeling polymer grafted nanoparticle networks reinforced by high-strength chains. Soft Matter 10(9):1374–1383. doi:10.1039/c3sm52300d

    Article  Google Scholar 

  • Hui CM, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller MR, Matyjaszewski K (2014) Surface-Initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem Mater 26(1):745–762. doi:10.1021/cm4023634

    Article  Google Scholar 

  • Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, Jerome R, Jerome C (2006) Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir 22(1):255–262. doi:10.1021/la051954b

    Article  Google Scholar 

  • Iyer BVS, Salib IG, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013a) Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9(1):109–121. doi:10.1039/c2sm27121d

    Article  Google Scholar 

  • Iyer BVS, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013b) Strain recovery and self-healing in dual cross-linked nanoparticle networks. Polym Chem 4(18):4927–4939. doi:10.1039/c3py00075c

    Article  Google Scholar 

  • Jakubowski W, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angew Chem-Int Ed 45(27):4482–4486. doi:10.1002/anie.200600272

    Article  Google Scholar 

  • Jayaraman A (2013) Polymer grafted nanoparticles: effect of chemical and physical heterogeneity in polymer grafts on particle assembly and dispersion. J Polym Sci Part B-Polym Phys 51(7):524–534. doi:10.1002/polb.23260

    Article  Google Scholar 

  • Jayaraman A, Schweizer KS (2008a) Effect of the number and placement of polymer tethers on the structure of concentrated solutions and melts of hybrid nanoparticles. Langmuir 24(19):11119–11130. doi:10.1021/la801432b

    Article  Google Scholar 

  • Jayaraman A, Schweizer KS (2008b) Structure and assembly of dense solutions and melts of single tethered nanoparticles. J Chem Phys 128(16):164904. doi:10.1063/1.2907717

    Article  Google Scholar 

  • Jayaraman A, Schweizer KS (2009) Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix. Macromolecules 42(21):8423–8434. doi:10.1021/ma901631x

    Article  Google Scholar 

  • Kim D, Srivastava S, Narayanan S, Archer LA (2012) Polymer nanocomposites: polymer and particle dynamics. Soft Matter 8(42):10813–10818. doi:10.1039/c2sm26325d

    Article  Google Scholar 

  • Kim JU, Matsen MW (2008) Interaction between polymer-grafted particles. Macromolecules 41(12):4435–4443. doi:10.1021/ma8002856

    Article  Google Scholar 

  • Koerner H, Drummy LF, Benicewicz B, Li Y, Vaia RA (2013) Nonisotropic self-organization of single-component hairy nanoparticle assemblies. ACS Macro Lett 2(8):670–676. doi:10.1021/mz4001805

    Article  Google Scholar 

  • Li F, Josephson DP, Stein A (2011) Colloidal assembly: The road from particles to colloidal molecules and crystals. Angew Chem-Int Ed 50(2):360–388. doi:10.1002/anie.201001451

    Article  Google Scholar 

  • Li Y, Tao P, Viswanath A, Benicewicz BC, Schadler LS (2013) Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir 29(4):1211–1220. doi:10.1021/la3036192

    Article  Google Scholar 

  • Li Y, Krentz TM, Wang L, Benicewicz BC, Schadler LS (2014) Ligand engineering of polymer nanocomposites: from the simple to the complex. ACS Appl Mater Interfaces 6(9):6005–6021. doi:10.1021/am405332a

    Article  Google Scholar 

  • Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29(7):635–698. doi:10.1016/j.progpolymsci.2004.03.001

    Article  Google Scholar 

  • Magenau AJD, Strandwitz NC, Gennaro A, Matyjaszewski K (2011) Electrochemically mediated atom transfer radical polymerization. Science 332(6025):81–84. doi:10.1126/science.1202357

    Article  Google Scholar 

  • Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45(10):4015–4039. doi:10.1021/ma3001719

    Article  Google Scholar 

  • Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1(4):276–288. doi:10.1038/nchem.257

    Article  Google Scholar 

  • Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990. doi:10.1021/cr940534g

    Article  Google Scholar 

  • Matyjaszewski K, Coca S, Gaynor SG, Wei ML, Woodworth BE (1997) Zerovalent metals in controlled ''living'' radical polymerization. Macromolecules 30(23):7348–7350. doi:10.1021/ma971258l

    Article  Google Scholar 

  • Matyjaszewski K, Jakubowski W, Min K, Tang W, Huang JY, Braunecker WA, Tsarevsky NV (2006) Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. In: Proceedings of the National Academy of Sciences of the United States of America 103(42):15309–15314. doi:10.1073/pnas.0602675103

    Google Scholar 

  • Milner ST (1991) Polymer brushes. Science 251(4996):905–914. doi:10.1126/science.251.4996.905

    Article  Google Scholar 

  • Milner ST, Witten TA, Cates ME (1988) A parabolic density profile for garfted polymers. Europhys Lett 5(5):413–418. doi:10.1209/0295-5075/5/5/006

    Article  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609. doi:10.1038/382607a0

    Article  Google Scholar 

  • Narayanan S, Choi J, Porter L, Bockstaller MR (2013) Flexible transparent metal/polymer composite materials based on optical resonant laminate structures. ACS Appl Mater Interfaces 5(10):4093–4099. doi:10.1021/am303211g

    Google Scholar 

  • Ohno K, Morinaga T, Takeno S, Tsujii Y, Fukuda T (2006) Suspensions of silica particles grafted with concentrated polymer brush: a new family of colloidal crystals. Macromolecules 39(3):1245–1249. doi:10.1021/ma0521708

    Article  Google Scholar 

  • Ohno K, Morinaga T, Takeno S, Tsujii Y, Fukuda T (2007) Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 40(25):9143–9150. doi:10.1021/ma071770z

    Article  Google Scholar 

  • Ojha S, Dang A, Hui CM, Mahoney C, Matyjaszewski K, Bockstaller MR (2013) Strategies for the synthesis of thermoplastic polymer nanocomposite materials with high inorganic filling fraction. Langmuir 29(28):8989–8996. doi:10.1021/la401522v

    Article  Google Scholar 

  • Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451(7178):553–556. doi:10.1038/nature06508

    Article  Google Scholar 

  • Phillips CL, Iacovella CR, Glotzer SC (2010) Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6(8):1693–1703. doi:10.1039/b911140a

    Article  Google Scholar 

  • Pietrasik J, Hui CM, Chaladaj W, Dong HC, Choi J, Jurczak J, Bockstaller MR, Matyjaszewski K (2011) Silica-Polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization. Macromol Rapid Commun 32(3):295–301. doi:10.1002/marc.201000531

    Article  Google Scholar 

  • Pyun J, Jia SJ, Kowalewski T, Patterson GD, Matyjaszewski K (2003) Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 36(14):5094–5104. doi:10.1021/ma034188t

    Article  Google Scholar 

  • Rodriguez R, Herrera R, Archer LA, Giannelis EP (2008) Nanoscale ionic materials. Adv Mater 20(22):4353–4358. doi:10.1002/adma.200801975

    Article  Google Scholar 

  • Savin DA, Pyun J, Patterson GD, Kowalewski T, Matyjaszewski K (2002) Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J Polym Sci Part B-Polym Phys 40(23):2667–2676. doi:10.1002/polb.10329

    Article  Google Scholar 

  • Scheutjens J, Fleer GJ (1979) Statistical-theory of the adsorption of interacting chain molecules.1. Partition-function, segment density distribution and adsorption isotherms. J Phys Chem 83(12):1619–1635. doi:10.1021/j100475a012

    Article  Google Scholar 

  • Scheutjens J, Fleer GJ (1980) Statistical-theory of the adsorption of interacting chain molecules.2. Train, loop and tail size distribution. J Phys Chem 84(2):178–190. doi:10.1021/j100439a011

    Article  Google Scholar 

  • Shah AA, Schultz B, Kohlstedt KL, Glotzer SC, Solomon MJ (2013) Synthesis, assembly, and image analysis of spheroidal patchy particles. Langmuir 29(15):4688–4696. doi:10.1021/la460317t

    Article  Google Scholar 

  • Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA (2014) Polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater 26(2):201–233. doi:10.1002/adma.201303070

    Article  Google Scholar 

  • Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem Mater 22(5):1749–1759. doi:10.1021/cm903182n

    Article  Google Scholar 

  • Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107(6):2270–2299. doi:10.1021/cr050947p

    Article  Google Scholar 

  • Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high density polymer brushes prepared by surface-initaited living radical polymerization. In: Jordan R (ed) Advances in polymer science: surface initiated polymerization, vol 197. Springer, Berlin, pp 1–47

    Google Scholar 

  • Virtanen S, Krentz TM, Nelson JK, Schadler LS, Bell M, Benicewicz B, Hillborg H, Zhao S (2014) Dielectric breakdown strength of epoxy bimodal-polymer-brush-grafted core functionalized silica nanocomposites. IEEE Trans Dielectr Electr Insulation 21(2):563–570. doi:10.1109/tdei.2014.004415

    Article  Google Scholar 

  • Voudouris P, Choi J, Dong H, Bockstaller MR, Matyjaszewski K, Fytas G (2009) Effect of shell architecture on the static and dynamic properties of polymer-coated particles in solution. Macromolecules 42(7):2721–2728. doi:10.1021/ma802878r

    Article  Google Scholar 

  • Wang JS, Matyjaszewski K (1995) Controlled living radical polymerization—atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117(20):5614–5615. doi:10.1021/ja00125a035

    Article  Google Scholar 

  • Wijmans CM, Zhulina EB (1993) Polymer brushes at curved surfaces. Macromolecules 26(26):7214–7224. doi:10.1021/ma00078a016

    Article  Google Scholar 

  • Xu C, Wu T, Mei Y, Drain CM, Batteas JD, Beers KL (2005) Synthesis and characterization of tapered copolymer brushes via surface-initiated atom transfer radical copolymerization. Langmuir 21(24):11136–11140. doi:10.1021/la051853d

    Article  Google Scholar 

  • Yu H-Y, Koch DL (2010) Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir 26(22):16801–16811. doi:10.1021/la102815r

    Article  Google Scholar 

  • Yu HY, Koch DL (2014) Self-diffusion and linear viscoelasticity of solvent-free nanoparticle-organic hybrid materials. J Rheol 58(2):369–395. doi:10.1122/1.4862316

    Article  Google Scholar 

  • Zhong M, Matyjaszewski K (2011a) How fast can a CRP be conducted with preserved chain end functionality? Macromolecules 44(8):2668–2677

    Article  Google Scholar 

  • Zhong MJ, Matyjaszewski K (2011b) How fast can a CRP be conducted with preserved chain end functionality? Macromolecules 44(8):2668–2677. doi:10.1021/ma102834s

    Article  Google Scholar 

Download references

Acknowledgments

S. Ramakrishnan and G. L. Chakkalakal were supported by AMSRD-ARL-RO-SI proposal number: 62885-MS-REP, agreement number: W911NF-13-1-0132 from the Department of Defense (Army Research Office).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Ramakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakkalakal, G., Ramakrishnan, S., Bockstaller, M. (2015). Polymer-Tethered Nanoparticle Materials—An Emerging Platform for Multifunctional Hybrid Materials. In: Kim, CS., Randow, C., Sano, T. (eds) Hybrid and Hierarchical Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12868-9_3

Download citation

Publish with us

Policies and ethics