Skip to main content

Evaluating Discharge Regimes of Karst Aquifer

  • Chapter
  • First Online:
Karst Aquifers—Characterization and Engineering

Part of the book series: Professional Practice in Earth Sciences ((PRES))

Abstract

Karst springs are typical for abrupt changes of discharge immediately following recharge events. Monitored discharges of springs are used to determine quantitative variability over the period of time, showing their reliability as dependable water sources. Karst aquifers also exhibit (at least) dual ground-water flow regimes, that is, fast (conduit-dominated) flow and slow (diffuse) flow. This is something that can be observed in nature as the fast change of water amount outflowing from the groundwater source, or described by rapidly responding hydrographs, recording water levels or discharges. Selection of proper investigative techniques characterizing discharge regime properties of a karst aquifer is therefore important in order to identify possible theoretical background models describing this behaviour. On this basis, we can also find a particular method of hydrograph separation into flow components linked to the fast-flow regime, slow-flow regime, or intermediate regimes as well. With this point in mind, several quantitative methods that might be particularly useful in hydrograph analysis of water outlets from the karst aquifer system are briefly discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro C, Wallace M (1994) Origin and classification of springs and historical review with current applications. Environ Geol 24:112–124

    Article  Google Scholar 

  • Barnes BS (1939) The structure of discharge recession curves. Trans Am Geophys Union 20:721–725

    Article  Google Scholar 

  • Bonacci O (2001) Analysis of the maximum discharge of karst springs. Hydrogeol J 2001(9):328–338

    Article  Google Scholar 

  • Bonacci O (2011) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci (Journal des Sciences Hydrologiques) 38(1–2):51–62

    Google Scholar 

  • Bonacci O, Bojanic D (1991) Rythmic karst spring. Hydrol Sci (Journal des Sciences Hydroloqiques) 36(1–2):35–47

    Article  Google Scholar 

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes do mouvement non permanent des eaux souterraines. Acad Sci Inst Fr 23:252–260

    Google Scholar 

  • Boussinesq J (1903) Sur un mode simple d’écoulement des nappes d’eau d’infiltration à lit horizontal, avec rebord vertical tout autour lorsqu’une partie de ce rebord est enlevée depuis la surface jusqu’au fond. C R Acad Sci 137:5–11

    Google Scholar 

  • Boussinesq J (1904) Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. J Math Pure Appl 10(5):5–78

    Google Scholar 

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng Ph, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Evaluation Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269

    Article  Google Scholar 

  • Drogue C (1972) Analyse statistique des hydrogrammes de décrues des sources karstiques. J Hydrol 15:49–68

    Article  Google Scholar 

  • Dub O, Němec J (1969) Hydrologie. Česká matice technická, LXXIV (1969), 353, Technický průvodce 34, SNTL – Nakladatelství technické literatury, Praha, p 378

    Google Scholar 

  • Fiorillo F (2011) Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs. Hydrogeol J 2011(19):1009–1019

    Article  Google Scholar 

  • Flora SP (2004) Hydrogeological characterization and discharge variability of springs in the Middle Verde River watershed, Central Arizona. MSc thesis, Northern Arizona University, p 237

    Google Scholar 

  • Forkasiewicz J, Paloc H (1967) Le régime de tarissement de la Foux de la Vis. Etude préliminaire. AIHS Coll. Hydrol.des roches fissurées, Dubrovnik (Yugoslavia) 1: 213–228

    Google Scholar 

  • Foster HA (1924) Theoretical frequency curves and their application to engineering problems. Am Soc Civil Eng Trans 87:142–303

    Google Scholar 

  • Foster HA (1934) Duration curves. Am Soc Civil Eng Trans 99:1213–1267

    Google Scholar 

  • Gregor M (2008) Vývoj programov na analýzu časových radov výdatností prameňov a prietokov vodných tokov. (Software development for time-series analysis of springs yields and river discharges; in Slovak). Podzemná voda 14/2:191–200

    Google Scholar 

  • Gregor M, Malík P (2012) Construction of master recession curve using genetic algorithms. J Hydrol Hydromechanics 60(1):3–15

    Google Scholar 

  • Griffiths GA, Clausen B (1997) Streamflow recession in basins with multiple water storages. J Hydrol 190:60–74

    Article  Google Scholar 

  • Hall FR (1968) Base-flow recessions—a review. Water Resour Res 4(5):973–983

    Article  Google Scholar 

  • Király L (2003) Karstification and groundwater flow/Speleogenesis and evolution of karst aquifers. In: Gabrovšek F (ed) Evolution of karst: from prekarst to cessation. Zalozba ZRC, Postojna-Ljubljana, pp 155–190

    Google Scholar 

  • Kovács A (2003) Geometry and hydraulic parameters of karst aquifers—a hydrodynamic modelling approach. PhD thesis, La Faculté des sciences de ľUniversité de Neuchâtel, Suisse, p 131

    Google Scholar 

  • Kovács A, Perrochet P, Király L, Jeannin PY (2005) A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J Hydrol 303:152–164

    Article  Google Scholar 

  • Kullman E (1980) L‘evaluation du regime des eaux souterraines dans les roches carbonatiques du Mésozoique des Carpates Occidentales par les courbes de tarissement des sources. Geologický ústav Dionýza Štúra, Bratislava, Západné Karpaty, sér. Hydrogeológia a inžinierska geológia 3:7–60

    Google Scholar 

  • Kullman E (1990) Krasovo-puklinové vody (Karst-fissure waters; in Slovak). Geologický ústav Dionýza Štúra, Bratislava, p 184

    Google Scholar 

  • Kullman E (2000) Nové metodické prístupy k riešeniu ochrany a ochranných pásiem zdrojov podzemných vôd v horninových prostrediach s krasovo-puklinovou priepustnosťou (New methods in groundwater protection and delineation of protection zones in fissure-karst rock environment; in Slovak). Podzemná voda 6/2:31–41

    Google Scholar 

  • Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

  • Lamb R, Beven K (1997) Using interactive recession curve analysis to specify a general catchment storage model. Hydrol Earth Syst Sci 1(1):101–113

    Article  Google Scholar 

  • Maillet E (ed) (1905) Essais d’hydraulique soutarraine et fluviale vol 1. Herman et Cie, Paris, p 218

    Google Scholar 

  • Malík P (2007) Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mts., Slovakia. Water Resources and environmental problems in karst. Environ Geol 51:707–711

    Article  Google Scholar 

  • Malík P, Michalko J (2010) Oxygen isotopes in different recession subregimes of karst springs in the Brezovské Karpaty Mts. (Slovakia). Acta Carsologica 39(2):271–287

    Google Scholar 

  • Malík P, Vojtková S (2012) Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ Earth Sci 65:2245–2257

    Article  Google Scholar 

  • Mangin A (1969) Etude hydraulique du mecanisme d’intermittence de Fontestorbes (Belesta, Ariege). Annales de Speleologie 24(2):253–298

    Google Scholar 

  • Meinzer OE (1923a) Outline of ground-water hydrology. USGS Water-Supply Paper, p 494

    Google Scholar 

  • Meinzer OE (1923b) The occurrence of ground water in United States with a discussion of principles. USGS Water-Supply Paper, 489, Washington DC, p 321

    Google Scholar 

  • Milanovic PT (1981) Karst hydrogeology. Water Resources Publications, Littleton

    Google Scholar 

  • Netopil R (1971) The classification of water springs on the basis of the variability of yields. Studia Geographica 22:145–150

    Google Scholar 

  • Oraseanu I, Iurkiewicz A (2010) Calugari ebb and flow spring. In: Oraseanu I, Iurkiewicz A (eds) Karst hydrogeology of Romania. Belvedere Publishing, Oradea, pp 262–274

    Google Scholar 

  • Padilla A, Pulido Bosch A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32:267–277

    Article  Google Scholar 

  • Posavec K, Bačani A, Nakić Z (2006) A visual basic spreadsheet macro for recession curve analysis. Ground Water 44(5):764–767

    Google Scholar 

  • Rutledge RT (1998) Computer programs for describing the recession of groundwater discharge and for estimating mean groundwater recharge and discharge from stream flow records-update. USGS water-resource investigations report 98-4148. Reston, VG

    Google Scholar 

  • Searcy JK (1959) Flow-duration curves. manual of hydrology, part 2. Low-flow techniques. Geological survey water-supply paper 1542-A, Methods and practices of the geological survey, United States Government Printing Office, Washington, p 33

    Google Scholar 

  • Schöeller H (1948) Le régime hydrogéologique des calcaires éocénes du Synclinal du Dyr el Kef (Tunisie). Bull Soc Géol Fr 5(18):167–180

    Google Scholar 

  • SÚTN (2009) Slovak technical standard STN 751520 Hydrológia, Hydrologické údaje podzemných vôd, Kvantifikácia výdatnosti prameňov. (Hydrology, hydrological data on groundwater, quantification of spring’s discharge; in Slovak), Slovenský ústav technickej normalizácie (SÚTN) Bratislava, p 14

    Google Scholar 

  • Springer AE, Stevens LE, Anderson DE, Parnell RA, Kreamer DK, Flora SP (2004) A comprehensive springs classification system: integrating geomorphic, hydrogeochemical and ecological criteria. In: Aridland springs in North America: ecology and conservation, pp 49–75

    Google Scholar 

  • Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370

    Article  Google Scholar 

  • Tallaksen LM, van Lanen HAJ (eds) (2004) Hydrological drought, processes and estimation methods for streamflow and groundwater. Developments in Water Science, vol 48. Amsterdam, Elsevier Science B.V., p 579

    Google Scholar 

  • Toebes C, Strang DD (1964) On recession curves 1: recession equations. J Hydrology (New Zealand) 3/2:2–15

    Google Scholar 

  • Werner PW, Sundquist KJ (1951) On the groundwater recession curve for large watersheds. IAHS Publ 33:202–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Malík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malík, P. (2015). Evaluating Discharge Regimes of Karst Aquifer. In: Stevanović, Z. (eds) Karst Aquifers—Characterization and Engineering. Professional Practice in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-12850-4_7

Download citation

Publish with us

Policies and ethics