Advertisement

The University Course Timetabling Problem

Chapter
  • 626 Downloads
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 678)

Abstract

Despite its simplicity, the UCTP is a computationally tough problem. We will review solution approaches to the UCTP and related problems and investigate combinatorial properties of the UCTP search space. We focus on establishing conditions that guarantee the connectedness of all clash-free timetables with respect to the Kempe-exchange operation.

Keywords

Conjunctive Normal Form Chordal Graph Timetabling Problem Conflict Graph Availability Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [AAN12]
    Achá, R.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Ann. Oper. Res. 1–21 (2012). doi: 10.1007/s10479-012-1081-x
  2. [AANORC09]
    Achá, R.A., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) 12th International Conference on Theory and Applications of Satisfiability Testing, SAT’09. Lecture Notes in Computer Science, vol. 5584, pp. 167–180. Springer, Berlin (2009)Google Scholar
  3. [AL05]
    Arntzen, H., Løkketangen, A.: A tabu search heuristic for a university timetabling problem. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Operations Research/Computer Science Interfaces Series, vol. 32, pp. 65–85. Springer, New York (2005). doi: 10.1007/0-387-25383-1_3 CrossRefGoogle Scholar
  4. [BB12]
    Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Technical Report, CSM-192, Computing Science and Mathematics, University of Stirling (2012)Google Scholar
  5. [BC96]
    Baker, B.S., Coffman, Jr., E.G.: Mutual exclusion scheduling. Theor. Comput. Sci. 162(2), 225–243 (1996). doi: 10.1016/0304-3975(96)00031-X CrossRefGoogle Scholar
  6. [BC09]
    Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410, 5215–5226 (2009). doi: 10.1016/j.tcs.2009.08.023 CrossRefGoogle Scholar
  7. [BdWK03]
    Burke, E.K., de Werra, D., Kingston, J.H.: Applications to timetabling. In: Gross, J.L., Yellen, J. (eds.) Handbook of Graph Theory, 1st edn., Chap. 5.6, pp. 475–483. CRC Press, Boca Raton (2003)Google Scholar
  8. [BEM+10]
    Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. Eur. J. Oper. Res. 206(1), 46–53 (2010). doi: 10.1016/j.ejor.2010.01.044 CrossRefGoogle Scholar
  9. [BFM97]
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation, 1st edn. IOP Publishing, Bristol (1997)Google Scholar
  10. [Bir]
    Birattari, M.: The Race Package. http://cran.r-project.org/web/packages/race (2013). Accessed Sept 2013
  11. [BLSS05]
    Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Operations Research/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer, New York (2005). doi: 10.1007/0-387-25383-1_6 CrossRefGoogle Scholar
  12. [BJL+11]
    Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the diameter of reconfiguration graphs for vertex colourings. Electron. Notes Discrete Math. 38(1), 161–166 (2011). doi: 10.1016/j.endm.2011.09.028 CrossRefGoogle Scholar
  13. [BJL+12]
    Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb. Optim. 1–12 (2012). doi: 10.1007/s10878-012-9490-y
  14. [BMM+07]
    Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for educational timetabling problems. Eur. J. Oper. Res. 176(1), 177–192 (2007)CrossRefGoogle Scholar
  15. [BN99]
    Burke, E.K., Newall, J.P.: A multistage evolutionary algorithm for the timetable problem. IEEE Trans. Evol. Comput. 3(1), 63–74 (1999). doi: 10.1109/4235.752921 CrossRefGoogle Scholar
  16. [Bon12]
    Bonsma, P.: The complexity of rerouting shortest paths. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Mathematical Foundations of Computer Science 2012. Lecture Notes in Computer Science, vol. 7464, pp. 222–233. Springer, Berlin/Heidelberg (2012). doi: 10.1007/978-3-642-32589-2_22 CrossRefGoogle Scholar
  17. [BYBS10]
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin/Heidelberg (2010). doi: 10.1007/978-3-642-02538-9_13 CrossRefGoogle Scholar
  18. [BZ03]
    Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)Google Scholar
  19. [Car01]
    Carter, M.W.: A comprehensive course timetabling and student scheduling system at the university of Waterloo. In: Selected Papers from the Third International Conference on Practice and Theory of Automated Timetabling III, PATAT ’00, pp. 64–84. Springer, London (2001)Google Scholar
  20. [CDGGS12]
    Chiarandini, M., Gaspero, L.D., Gualandi, S., Schaerf, A.: The balanced academic curriculum problem revisited. J. Heuristics 18(1), 119–148 (2012)CrossRefGoogle Scholar
  21. [CDGS12]
    Ceschia, S., Gaspero, L.D., Schaerf, A.: Design, engineering, and experimental analysis of a simulated annealing approach to the post-enrolment course timetabling problem. Comput. Oper. Res. 39(7), 1615–1624 (2012). doi: 10.1016/j.cor.2011.09.014 CrossRefGoogle Scholar
  22. [Che10]
    Chen, J.: A new SAT encoding of the at-most-one constraint. In: Proceedings of Constraint Modelling and Reformulation (2010)Google Scholar
  23. [CK95]
    Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems. In: Practice and Theory of Automated Timetabling, pp. 283–295 (1995). doi: 10.1007/3-540-61794-9_66
  24. [CL96]
    Carter, M.W., Laporte, G.: Recent developments in practical examination timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. Lecture Notes in Computer Science, vol. 1153, pp. 1–21. Springer, Berlin/Heidelberg (1996). doi: 10.1007/3-540-61794-9_49 CrossRefGoogle Scholar
  25. [CL07]
    Cioppa, T.M., Lucas, T.W.: Efficient nearly orthogonal and space-filling latin hypercubes. Technometrics 49(1), 45–55 (2007)CrossRefGoogle Scholar
  26. [CLL96]
    Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strategies and applications. J. Oper. Res. Soc. 47(3), 373–383 (1996)CrossRefGoogle Scholar
  27. [CM01]
    Castro, C., Manzano, S.: Variable and value ordering when solving balanced academic curriculum problems. In: 6th Workshop of the ERCIM WG on Constraints (2001)Google Scholar
  28. [Con06]
    Conover, W.J.: Practical Nonparametric Statistics. Wiley Series in Probability and Statistics, 3rd edn. Wiley, New York (2006)Google Scholar
  29. [Cor05]
    Corneil, D.G.: Lexicographic breadth first search—a survey. In: Hromkovic, J., Nagl, M., Westfechtel, B. (eds.) Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 3353, pp. 1–19. Springer, Berlin/Heidelberg (2005). doi: 10.1007/978-3-540-30559-0_1 CrossRefGoogle Scholar
  30. [CvdHJ11]
    Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011). doi: 10.1002/jgt.20514 CrossRefGoogle Scholar
  31. [DGMS07]
    Di Gaspero, L., McCollum, B., Schaerf, A.: The second international timetabling competition (ITC-2007): curriculum-based course timetabling (Track 3). In: Proceedings of the 1st International Workshop on Scheduling, a Scheduling Competition (SSC) (2007)Google Scholar
  32. [DGS]
    Di Gaspero, L., Schaerf, A.: Curriculum-based course timetabling web-site. http://satt.diegm.uniud.it/ctt/ (2013). Accessed Sept 2013
  33. [DGS01]
    Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III. Lecture Notes in Computer Science, vol. 2079, pp. 104–117. Springer, Berlin/Heidelberg (2001)CrossRefGoogle Scholar
  34. [DGS06]
    Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling problems. J. Math. Model. Algorithm 5(1), 65–89 (2006). doi: 10.1007/s10852-005-9032-z CrossRefGoogle Scholar
  35. [DLL62]
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). doi: 10.1145/368273.368557 CrossRefGoogle Scholar
  36. [DPS13]
    Dostert, M., Politz, A., Schmitz, H.: Algorithms and complexity of student sectioning for existing timetables. In: Proceedings of the 6th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 218–229 (2013)Google Scholar
  37. [DS04]
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)CrossRefGoogle Scholar
  38. [Due93]
    Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104(1), 86–92 (1993). doi: 10.1006/jcph.1993.1010 CrossRefGoogle Scholar
  39. [dW85]
    de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19(2), 151–162 (1985)CrossRefGoogle Scholar
  40. [dW97]
    de Werra, D.: Restricted coloring models for timetabling. Discrete Math. 165–166(15), 161–170 (1997). doi: 10.1016/S0012-365X(96)00208-7 CrossRefGoogle Scholar
  41. [EIS76]
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5(4), 691–703 (1976). doi: 10.1137/0205048 CrossRefGoogle Scholar
  42. [Erb01]
    Erben, W.: A grouping genetic algorithm for graph colouring and exam timetabling. In: Burke, E.K., Erben, W. (eds.) Practice and Theory of Automated Timetabling III. Lecture Notes in Computer Science, vol. 2079, pp. 132–156. Springer, Berlin/Heidelberg (2001). doi: 10.1007/3-540-44629-X_9 CrossRefGoogle Scholar
  43. [ES04]
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer, Berlin/Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  44. [Fal94]
    Falkenauer, E.: A new representation and operators for genetic algorithms applied to grouping problems. Evol. Comput. 2(2), 123–144 (1994)CrossRefGoogle Scholar
  45. [Fal98]
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York (1998)Google Scholar
  46. [FG10]
    Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint. In: Proceedings of International Workshop on Modelling and Reformulating Constraint Satisfaction Problems (2010)Google Scholar
  47. [Fri37]
    Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937). doi: 10.1080/01621459.1937.10503522 CrossRefGoogle Scholar
  48. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)Google Scholar
  49. [GKMP09]
    Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009). doi: 10.1137/07070440X CrossRefGoogle Scholar
  50. [GL97]
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)CrossRefGoogle Scholar
  51. [Glo89]
    Glover, F.: Tabu search: part I. ORSA J. Comput 1(3), 190–206 (1989)CrossRefGoogle Scholar
  52. [HD05]
    Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005). doi: 10.1016/j.tcs.2005.05.008 CrossRefGoogle Scholar
  53. [HKW02]
    Hnich, B., Kiziltan, Z., Walsh, T.: Modelling a balanced academic curriculum problem. In: Proceedings of CP-AI-OR-2002, pp. 121–131 (2002)Google Scholar
  54. [IDH+11]
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)CrossRefGoogle Scholar
  55. [Jer95]
    Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Struct. Algorithm 7(2), 157–165 (1995). doi: 10.1002/rsa.3240070205 CrossRefGoogle Scholar
  56. [Joh02]
    Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, vol. 59, pp. 215–250. American Mathematical Society, Providence (2002)Google Scholar
  57. [Ken10]
    Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2010)Google Scholar
  58. [KGV83]
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefGoogle Scholar
  59. [Kőn16]
    Kőnig, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann. 77(4), 453–465 (1916). doi: 10.1007/BF01456961 CrossRefGoogle Scholar
  60. [Kos05]
    Kostuch, P.: The university course timetabling problem with a three-phase approach. In: Burke, E.K., Trick, M. (eds.) Practice and Theory of Automated Timetabling. Lecture Notes in Computer Science, vol. 3616, pp. 109–125. Springer, Berlin/Heidelberg (2005). doi: 10.1007/11593577_7 CrossRefGoogle Scholar
  61. [Lew06]
    Lewis, R.: Metaheuristics for university course timetabling. Ph.D. thesis, Napier University, Edinburgh (2006)Google Scholar
  62. [Lew08]
    Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum 30(1), 167–190 (2008). doi: 10.1007/s00291-007-0097-0 CrossRefGoogle Scholar
  63. [LH10]
    Lü, Z., Hao, J.-K.: Adaptive tabu search for course timetabling. Eur. J. Oper. Res. 200(1), 235–244 (2010). doi: 10.1016/j.ejor.2008.12.007 CrossRefGoogle Scholar
  64. [LIDLSB11]
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical Report, TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles (2011)Google Scholar
  65. [LPa]
    Lewis, R., Paechter, B.: GGA experimental results. http://www.soc.napier.ac.uk/~benp/centre/timetabling/experimentalresults2.htm (2013). Accessed Sept 2013
  66. [LPb]
    Lewis, R., Paechter, B.: New “harder” instances for the university course timetabling problem. http://www.soc.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm (2013). Accessed Sept 2013
  67. [LP04]
    Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary algorithms. In: Proceedings of the 5th International Conference on Recent Advances in Soft Computing (RASC), pp. 189–195 (2004)Google Scholar
  68. [LP07]
    Lewis, R., Paechter, B.: Finding feasible timetables using group-based operators. IEEE Trans. Evol. Comput. 11(3), 397–413 (2007)CrossRefGoogle Scholar
  69. [Luc09]
    Lucarelli, G.: Scheduling in computer and communication systems and generalized graph coloring problems. Ph.D. thesis, Athens University Economics and Business (AUEB) (2009)Google Scholar
  70. [LVM81]
    Las Vergnas, M., Meyniel, H.: Kempe classes and the Hadwiger conjecture. J. Combin. Theory Ser. B 31(1), 95–104 (1981). doi: 10.1016/S0095-8956(81)80014-7 CrossRefGoogle Scholar
  71. [LZC11]
    Liu, Y., Zhang, D., Chin, F.Y.L.: A clique-based algorithm for constructing feasible timetables. Optim. Methods Software 26(2), 281–294 (2011). doi: 10.1080/10556781003664739 CrossRefGoogle Scholar
  72. [Mat68]
    Matula, D.W.: A min-max theorem for graphs with application to graph coloring. SIAM Rev. 10(4), 467–490 (1968). doi: 10.1137/1010115 CrossRefGoogle Scholar
  73. [MBHS02]
    Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for the examination timetabling problem. In: Proceedings of the 4th International Conference on the Practice and Theory of Automated Timetabling (PATAT), pp. 207–231. Springer, Heidelberg (2002). doi: 10.1007/978-3-540-45157-0_14
  74. [MMZ+01]
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535. ACM, New York (2001)Google Scholar
  75. [Moh07]
    Mohar, B.: Kempe equivalence of colorings. In: Bondy, A., Fonlupt, J., Fouquet, J.-L., Fournier, J.-C., Ramirez Alfonsin, J.L. (eds.) Graph Theory in Paris. Trends in Mathematics, pp. 287–297. Birkhäuser, Basel (2007). doi: 10.1007/978-3-7643-7400-6_22 CrossRefGoogle Scholar
  76. [MSP+10]
    McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: the second international timetabling competition. INFORMS J. Comput. 22(1), 120–130 (2010)CrossRefGoogle Scholar
  77. [NMCR12]
    Nothegger, C., Mayer, A., Chwatal, A., Raidl, G.R.: Solving the post enrolment course timetabling problem by ant colony optimization. Ann. Oper. Res. 194(1), 325–339 (2012). doi: 10.1007/s10479-012-1078-5 CrossRefGoogle Scholar
  78. [Öst02]
    Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120(1), 197–207 (2002)CrossRefGoogle Scholar
  79. [PGRD]
    Paechter, B., Gambardella, L.M., Rossi-Doria, O.: International timetabling competition 2002. http://www.idsia.ch/Files/ttcomp2002 (2013). Accessed Oct 2013
  80. [Pil13]
    Pillay, N.: A survey of school timetabling research. Ann. Oper. Res. 1–33 (2013). doi: 10.1007/s10479-013-1321-8
  81. [QB08]
    Qu, R., Burke, E.K.: Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems. J. Oper. Res. Soc. 60(9), 1273–1285 (2008)CrossRefGoogle Scholar
  82. [QBM+09]
    Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search methodologies and automated system development for examination timetabling. J. Sched. 12(1), 55–89 (2009). doi: 10.1007/s10951-008-0077-5 CrossRefGoogle Scholar
  83. [R D08]
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2008). ISBN 3-900051-07-0Google Scholar
  84. [RMM11]
    Rudová, H., Müller, T., Murray, K.: Complex university course timetabling. J. Sched. 14(2), 187–207 (2011). doi: 10.1007/s10951-010-0171-3 CrossRefGoogle Scholar
  85. [RTL76]
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). doi: 10.1137/0205021 CrossRefGoogle Scholar
  86. [Sch99]
    Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999). doi: 10.1023/A:1006576209967 CrossRefGoogle Scholar
  87. [SH07]
    Schimmelpfeng, K., Helber, S.: Application of a real-world university-course timetabling model solved by integer programming. OR Spectrum 29(4), 783–803 (2007)CrossRefGoogle Scholar
  88. [Sin05]
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: Proceedings of the 11th International Conference on Principles and Practice of Constraint Programming (CP 2005), Sitges, pp. 827–831 (2005)Google Scholar
  89. [SW68]
    Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of a graph. J. Combin. Theory 4(1), 1–3 (1968). doi: 10.1016/S0021-9800(68)80081-X CrossRefGoogle Scholar
  90. [TBM07]
    Tuga, M., Berretta, R., Mendes, A.: A hybrid simulated annealing with Kempe chain neighborhood for the university timetabling problem. In: Proceedings 6th ACIS International Conference on Computer and Information Science (ACIS-ICIS), pp. 400–405 (2007)Google Scholar
  91. [TD98]
    Thompson, J.M., Dowsland, K.A.: A robust simulated annealing based examination timetabling system. Comput. Oper. Res. 25(7–8), 637–648 (1998). doi: 10.1016/S0305-0548(97)00101-9 CrossRefGoogle Scholar
  92. [Ueh02]
    Uehara, R.: Linear time algorithms on chordal bipartite and strongly chordal graphs. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 2380, pp. 993–1004. Springer, Berlin/Heidelberg (2002). doi: 10.1007/3-540-45465-9_85 CrossRefGoogle Scholar
  93. [VG08]
    Van Gelder, A.: Another look at graph coloring via propositional satisfiability. Discrete Appl. Math. 156(2), 230–243 (2008)CrossRefGoogle Scholar
  94. [Wil45]
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945). doi: 10.2307/3001968 CrossRefGoogle Scholar
  95. [WP67]
    Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J. 10(1), 85–86 (1967). doi: 10.1093/comjnl/10.1.85 CrossRefGoogle Scholar
  96. [Zuc07]
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(6), 103–128 (2007). doi: 10.4086/toc.2007.v003a006 CrossRefGoogle Scholar
  97. [MW10b*]
    Mühlenthaler, M., Wanka, R.: A novel event insertion heuristic for finding feasible solutions of course timetabling problems. In: Proceedings of 8th International Conferene on the Practice and Theory of Automated Timetabling (PATAT), pp. 294–304 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dept. of Computer Science 12University of Erlangen-NurembergErlangenGermany

Personalised recommendations