Skip to main content

The Blood-Retinal Barrier

  • Chapter
  • First Online:
Ocular Vascular Occlusive Disorders
  • 2363 Accesses

Abstract

The subject of the blood-retinal barrier (BRB) is important in understanding the pathology of various retinal diseases as well as in their treatment. There is a voluminous literature on the BRB and its derangement. The retina is transparent so that the light travels unhindered to the photoreceptors. Therefore, for proper visual function of the retina, as well as for physiological integrity of the retinal vessels and retinal homeostasis, the presence of an efficient BRB is essential. To do that, the BRB regulates movement of fluids and molecules between the blood and the retina. Also for drug delivery to the retina, the presence of a BRB becomes an important consideration [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hosoya K, Tomi M, Tachikawa M. Strategies for therapy of retinal diseases using systemic drug delivery: relevance of transporters at the blood-retinal barrier. Expert Opin Drug Deliv. 2011;8(12):1571–87.

    Article  CAS  PubMed  Google Scholar 

  2. Cunha-Vaz JG, Shakib M, Ashton N. Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br J Ophthalmol. 1966;50(8):441–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Shakib M, Cunha-Vaz JG. Studies on the permeability of the blood-retinal barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood-retinal barrier. Exp Eye Res. 1966;5(3):229–34.

    Article  CAS  PubMed  Google Scholar 

  4. Cunha-Vaz JG, Maurice DM. The active transport of fluorescein by the retinal vessels and the retina. J Physiol. 1967;191(3):467–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27(6):622–47.

    Article  CAS  PubMed  Google Scholar 

  6. Constable PA, Lawrenson JG. Glial cell factors and the outer blood retinal barrier. Ophthalmic Physiol Opt. 2009;29(5):557–64.

    Article  PubMed  Google Scholar 

  7. Small RK, Watkins BA, Munro PM, Liu D. Functional properties of retinal Müller cells following transplantation to the anterior eye chamber. Glia. 1993;7(2):158–69.

    Article  CAS  PubMed  Google Scholar 

  8. Tout S, Chan-Ling T, Holländer H, Stone J. The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience. 1993;55(1):291–301.

    Article  CAS  PubMed  Google Scholar 

  9. Distler C, Dreher Z. Glia cells of the monkey retina–II. Müller cells. Vision Res. 1996;36(16):2381–94.

    Article  CAS  PubMed  Google Scholar 

  10. Phillips BE, Antonetti DA. Blood-retinal barrier. In: Joussen AM, Gardner TW, Kirchhof B, Ryan SJ, editors. Retinal vascular disease. Berlin: Springer; 2007. p. 139–53.

    Chapter  Google Scholar 

  11. Abukawa H, Tomi M, Kiyokawa J, Hori S, Kondo T, Terasaki T, et al. Modulation of retinal capillary endothelial cells by Müller glial cell-derived factors. Mol Vis. 2009;15:451–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Cunha-Vaz JG. The blood-ocular barriers: past, present, and future. Doc Ophthalmol. 1997;93(1–2):149–57.

    Article  CAS  PubMed  Google Scholar 

  13. Gardner TW, Lieth E, Khin SA, Barber AJ, Bonsall DJ, Lesher T, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997;38(11):2423–7.

    CAS  PubMed  Google Scholar 

  14. Tao-Cheng JH, Nagy Z, Brightman MW. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci. 1987;7(10):3293–9.

    CAS  PubMed  Google Scholar 

  15. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38(6):323–37.

    Article  CAS  PubMed  Google Scholar 

  16. Igarashi Y, Chiba H, Utsumi H, Miyajima H, Ishizaki T, Gotoh T, et al. Expression of receptors for glial cell line-derived neurotrophic factor (GDNF) and neurturin in the inner blood-retinal barrier of rats. Cell Struct Funct. 2000;25(4):237–41.

    Article  CAS  PubMed  Google Scholar 

  17. Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci. 2001;42(3):853–9.

    CAS  PubMed  Google Scholar 

  18. Nishikiori N, Osanai M, Chiba H, Kojima T, Mitamura Y, Ohguro H, et al. Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retinopathy. Diabetes. 2007;56(5):1333–40.

    Article  CAS  PubMed  Google Scholar 

  19. Chan-Ling T, Stone J. Degeneration of astrocytes in feline retinopathy of prematurity causes failure of the blood-retinal barrier. Invest Ophthalmol Vis Sci. 1992;33(7):2148–59.

    CAS  PubMed  Google Scholar 

  20. Cogan DG, Kuwabara T. Comparison of retinal and cerebral vasculature in trypsin digest preparations. Br J Ophthalmol. 1984;68(1):10–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Frank RN, Turczyn TJ, Das A. Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci. 1990;31(6):999–1007.

    CAS  PubMed  Google Scholar 

  22. Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7(11):1031–8.

    CAS  PubMed  Google Scholar 

  23. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206(4):319–48.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tomasek JJ, Haaksma CJ, Schwartz RJ, Vuong DT, Zhang SX, Ash JD, et al. Deletion of smooth muscle alpha-actin alters blood-retina barrier permeability and retinal function. Invest Ophthalmol Vis Sci. 2006;47(6):2693–700.

    Article  PubMed  Google Scholar 

  25. Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001;169(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  26. Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol. 2001;30(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  27. Lombard JH. A novel mechanism for regulation of retinal blood flow by lactate: gap junctions, hypoxia, and pericytes. Am J Physiol Heart Circ Physiol. 2006;290(3):H921–2.

    Article  CAS  PubMed  Google Scholar 

  28. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yamanishi S, Katsumura K, Kobayashi T, Puro DG. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol. 2006;290(3):H925–34.

    Article  CAS  PubMed  Google Scholar 

  30. Chakravarthy U, Gardiner TA, Anderson P, Archer DB, Trimble ER. The effect of endothelin 1 on the retinal microvascular pericyte. Microvasc Res. 1992;43(3):241–54.

    Article  CAS  PubMed  Google Scholar 

  31. Schonfelder U, Hofer A, Paul M, Funk RH. In situ observation of living pericytes in rat retinal capillaries. Microvasc Res. 1998;56(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kim JH, Kim JH, Yu YS, Kim DH, Kim KW. Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res. 2009;87(3):653–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JH, Kim JH, Yu YS, Cho CS, Kim KW. Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J Cereb Blood Flow Metab. 2009;29(3):621–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rangasamy S, Srinivasan R, Maestas J, McGuire PG, Das A. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(6):3784–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hofman P, Blaauwgeers HG, Tolentino MJ, Adamis AP, Nunes Cardozo BJ, Vrensen GF, et al. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Curr Eye Res. 2000;21(2):637–45.

    Article  CAS  PubMed  Google Scholar 

  36. Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42(10):2408–13.

    CAS  PubMed  Google Scholar 

  37. Titchenell PM, Lin CM, Keil JM, Sundstrom JM, Smith CD, Antonetti DA. Novel atypical PKC inhibitors prevent vascular endothelial growth factor-induced blood-retinal barrier dysfunction. Biochem J. 2012;446(3):455–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shen W, Li S, Chung SH, Gillies MC. Retinal vascular changes after glial disruption in rats. J Neurosci Res. 2010;88(7):1485–99.

    CAS  PubMed  Google Scholar 

  39. Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest. 2005;85(5):597–607.

    Article  CAS  PubMed  Google Scholar 

  40. Navaratna D, McGuire PG, Menicucci G, Das A. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes. 2007;56(9):2380–7.

    Article  CAS  PubMed  Google Scholar 

  41. Kim J, Kim CS, Lee YM, Jo K, Shin SD, Kim JS. Methylglyoxal induces hyperpermeability of the blood-retinal barrier via the loss of tight junction proteins and the activation of matrix metalloproteinases. Graefes Arch Clin Exp Ophthalmol. 2012;250(5):691–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hayreh SS. Chapter 171. Physiological anatomy of the retinal vasculature. Encyclopedia of the Eye. Elsevier; Oxford: Academic Press. 2010, p. 431–38.

    Google Scholar 

  43. Rizzolo LJ. Polarity and the development of the outer blood-retinal barrier. Histol Histopathol. 1997;12(4):1057–67.

    CAS  PubMed  Google Scholar 

  44. Wittchen ES, Hartnett ME. The small GTPase Rap1 is a novel regulator of RPE cell barrier function. Invest Ophthalmol Vis Sci. 2011;52(10):7455–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kim JH, Lee SJ, Kim KW, Yu YS, Kim JH. Oxidized low density lipoprotein-induced senescence of retinal pigment epithelial cells is followed by outer blood-retinal barrier dysfunction. Int J Biochem Cell Biol. 2012;44(5):808–14.

    Article  CAS  PubMed  Google Scholar 

  46. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension. VI. Hypertensive choroidopathy. Ophthalmology. 1986;93(11):1383–400.

    Article  CAS  PubMed  Google Scholar 

  47. Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci. 2011;52(5):2160–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH, Stefansson E. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27(3):284–330.

    Article  CAS  PubMed  Google Scholar 

  49. Pardridge WM. Blood-brain barrier methodology and biology. In: Pardridge WM, editor. Introduction to the Blood-brain barrier: methodology, biology and pathology. New York: Cambridge University Press; 1998. p. 1–10.

    Chapter  Google Scholar 

  50. Cunha-Vaz JG, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21 Suppl 6:S3–9.

    PubMed  Google Scholar 

  51. Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med. 1996;183(5):1981–6.

    Article  CAS  PubMed  Google Scholar 

  52. Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol. 2003;285(6):L1179–83.

    CAS  PubMed  Google Scholar 

  53. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279–367.

    Article  CAS  PubMed  Google Scholar 

  54. Van Itallie CM, Anderson JM. The molecular physiology of tight junction pores. Physiology (Bethesda). 2004;19:331–8.

    Article  Google Scholar 

  55. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78(3):715–21.

    Article  CAS  PubMed  Google Scholar 

  56. Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res. 2005;80(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  57. Vinten M, Larsen M, Lund-Andersen H, Sander B, La Cour M. Short-term effects of intravitreal triamcinolone on retinal vascular leakage and trunk vessel diameters in diabetic macular oedema. Acta Ophthalmol Scand. 2007;85(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  58. Wang K, Wang Y, Gao L, Li X, Li M, Guo J. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression. Biol Pharm Bull. 2008;31(8):1541–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang X, Bao S, Lai D, Rapkins RW, Gillies MC. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas. Diabetes. 2008;57(4):1026–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Penfold PL, Wen L, Madigan MC, Gillies MC, King NJ, Provis JM. Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 (ICAM-1) expression of the ECV304 cell line: implications for macular degeneration. Clin Exp Immunol. 2000;121(3):458–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Moldow B, Sander B, Larsen M, Lund-Andersen H. Effects of acetazolamide on passive and active transport of fluorescein across the normal BRB. Invest Ophthalmol Vis Sci. 1999;40(8):1770–5.

    CAS  PubMed  Google Scholar 

  62. Moldow B, Sander B, Larsen M, Engler C, Li B, Rosenberg T, et al. The effect of acetazolamide on passive and active transport of fluorescein across the blood-retina barrier in retinitis pigmentosa complicated by macular oedema. Graefes Arch Clin Exp Ophthalmol. 1998;236(12):881–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hayreh, S.S. (2015). The Blood-Retinal Barrier. In: Ocular Vascular Occlusive Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-12781-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12781-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12780-4

  • Online ISBN: 978-3-319-12781-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics