Skip to main content

Molecular Mechanisms Involved in the Regulation of Food Intake

  • Chapter
  • First Online:
Molecular Mechanisms Underpinning the Development of Obesity

Abstract

Obesity has its development as a result of a positive balance between caloric intake and energy expenditure. There are many factors involved in this imbalance, from which emerges the neuroendocrine regulation of energy metabolism. In this regulation are involved gastrointestinal hormones, which constitute important modulators of the energy homeostasis, as well as other molecules with a more central action. This modulatory effect affects appetite and satiety, occurring by direct action on the hypothalamus or in the brainstem level. Currently, only ghrelin has been implicated in the initiation of food intake, being considered a major orexigenic signal, both in animal models as well as in humans. However, the regulation of food intake and energy balance is considered an extremely complex process, whose operation and balance is possible only through the action of various endocrine signals in the gastrointestinal tract. In this chapter we review the main factors involved in the regulation of food intake, energy balance and its pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holmgren M, Lindgren A, de Munter J, Rasmussen F, Ahlström G (2014) Impacts of mobility disability and high and increasing body mass index on health-related quality of life and participation in society: a population-based cohort study from Sweden. BMC Public Health 14(1):381

    Article  PubMed Central  PubMed  Google Scholar 

  2. González Jiménez E, Aguilar Cordero MJ, García García CJ, García López PA, Álvarez Ferre J, Padilla López CA (2010) Leptina: un péptido con potencial terapéutico en sujetos obesos. Endocrinol Nutr 57(7):322–327

    Google Scholar 

  3. Higgins JA (2014) Resistant starch and energy balance: impact on weight loss and maintenance. Crit Rev Food Sci Nutr 54(9):1158–1166

    Google Scholar 

  4. Liu X, Zhu Z, Kalyani M, Janik JM, Shi H (2014) Effects of energy status and diet on Bdnf expression in the ventromedial hypothalamus of male and female rats. Physiol Behav 130:99–107

    Google Scholar 

  5. Kirsz K, Zięba DA (2012) The discovery of neuromedin U and its pivotal role in the central regulation of energy homeostasis. Postepy Hig Med Dosw 16(66):196–203

    Google Scholar 

  6. Kirsz K, Zieba DA (2011) Ghrelin-mediated appetite regulation in the central nervous system. Peptides 32(11):2256–2264

    Google Scholar 

  7. Zieba DA, Kirsz K, Molik E, Romanowicz K, Wojtowicz AK (2011) Effects of orexigenic peptides and leptin on melatonin secretion during different photoperiods in seasonal breeding ewes: an in vitro study. Domest Anim Endocrinol 40(3):139–146

    Google Scholar 

  8. Zieba DA, Amstalden M, Williams GL (2005) Regulatory roles of leptin in reproduction and metabolism: a comparative review. Domest Anim Endocrinol 29(1):166–185

    Google Scholar 

  9. Hermoso López F (2002) Obesidad infantil. Concepto, valoración, clasificación, etiopatogenia y bases genéticas. In: Cañete Estrada R, Fernández García JM. (eds) Actualizaciones en Endocrinología Pediátrica.Ergon, Madrid, pp 81–94

    Google Scholar 

  10. Solomon A, De Fanti BA, Martínez JA (2004) Control del apetito y peso corporal: la ghrelina y la señalización orexigénica. Nutr Clín y Diet Hosp 55:13–27

    Google Scholar 

  11. Badman MK, Flier JS (2005) The gut and energy balance: visceral allies in the obesity wars. Science 307:1909–1914

    Google Scholar 

  12. Lénárd L, Karádi Z (2012) Regulatory processes of hunger motivated behavior. Acta Biol Hung 63(1):80–88

    Google Scholar 

  13. Granados K, Stephens BR, Malin SK, Zderic TW, Hamilton MT, Braun B (2012) Appetite regulation in response to sitting and energy imbalance. Appl Physiol Nutr Metab 37(2):323–333

    Google Scholar 

  14. Halford JC, Harrold JA (2012) Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management. Proc Nutr Soc 71(2):350–362

    Google Scholar 

  15. Speakman JR, Stubbs RJ, Mercer JG (2002) Does body mass play a role in the regulation of food intake? Proc Nutr Soc 61(4):473–487

    Google Scholar 

  16. Friedam MI, Tordoff MG, Ramírez I (1986) Integrated metabolic control of food intake. Brain Res Bull 17:855–859

    Google Scholar 

  17. Neary NM, Goldstone AP, Bloom SR (2004) Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol 60:153–160

    Google Scholar 

  18. Daly DM, Park SJ, Valinsky WC, Beyak MJ (2011) Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol 589(11):2857–2870

    Google Scholar 

  19. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84:488–495

    Google Scholar 

  20. Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tomé D (2012) Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev 29:1–11

    Google Scholar 

  21. Wen D, Ma CL, Zhang YJ, Meng YX, Ni ZY, Li SJ, Cong B (2012) Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence. BMC Neurosci 13(1):63

    Google Scholar 

  22. Laverman P, Joosten L, Eek A, Roosenburg S, Peitl PK, Maina T et al (2011) Comparative biodistribution of 12 ¹¹¹In-labelled gastrin/CCK2 receptor-targeting peptides. Eur J Nucl Med Mol Imaging 38(8):1410–1416

    Google Scholar 

  23. Nylec M, Olszanecka-Glinianowicz M (2010) A little-known new components of the appetite control. Postepy Hig Med Dosw 64:291–295

    Google Scholar 

  24. Simpson K, Parker J, Plumer J, Bloom S (2012) CCK, PYY and PP: the control of energy balance. Handb Exp Pharmacol 209:209–230

    Google Scholar 

  25. Suzuki K, Jayasena CN, Bloom SR (2011) The gut hormones in appetite regulation. J Obes 2011: 528 − 401

    Google Scholar 

  26. Moss C, Dhillo WS, Frost G, Hickson M (2012) Gastrointestinal hormones: the regulation of appetite and the anorexia of ageing. J Hum Nutr Diet 25(1):3–15

    Google Scholar 

  27. Marroquí L, González A, Neco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A, Quesada I (2012) Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 49(1):9–17

    Google Scholar 

  28. Jéquier E (2002) Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci 967:379–388

    Google Scholar 

  29. Roubos EW, Dahmen M, Kozicz T, Xu L (2012) Leptin and the hypothalamo-pituitary-adrenal stress axis. Gen Comp Endocrinol 177(1):28–36

    Google Scholar 

  30. Robertson SA, Leinninger GM, Myers MG (2008) Molecular and neural mediators of leptin action. Physiol Behav 94:637–642

    Google Scholar 

  31. Karbowska J, Kochan Z (2012) Leptin as a mediator between obesity and cardiac dysfunction. Postepy Hig Med Dosw 66:267–274

    Google Scholar 

  32. Kul A, Baltaci AK, Mogulkoc R (2012) Effect of testosterone supplementation on leptin release in rats after castration and/or unilateral surrenalectomy. Endokrynol Pol 63(2):119–124

    Google Scholar 

  33. Kanoski SE (2012) Cognitive and neuronal systems underlying obesity. Physiol Behav 106(3):337–344

    Google Scholar 

  34. Theodore MD, Iosif MD, Sharon MD, Christos S, Mantzoros MD (2010) Narrative review: the role of Leptin in human physiology: emerging clinical applications. Ann Intern Med 152:93–100

    Google Scholar 

  35. Young AA (2012) Brainstem sensing of meal-related signals in energy homeostasis. Neuropharmacology 63(1):31–45

    Google Scholar 

  36. Tucholski K, Otto-Buczkowska E (2011) The role of leptin in the regulation of carbohydrate metabolism. Endokrynol Pol 62(3):258–262

    Google Scholar 

  37. Arteaga A (1997) Etiopatogenia de la obesidad. Boletín de la Escuela de Medicina 26(1), available in: http://escuela.med.puc.cl/publ/boletin/obesidad/EtiopatogeniaObesidad.html

  38. Khan SM, Hamnvik OP, Brinkoetter M, Mantzoros CS (2012) Leptin as a modulator of neuroendocrine function in humans. Yonsei Med J 53(4):671–679

    Google Scholar 

  39. Kelly AS, Metzig AM, Schwarzenberg SJ, Norris AL, Fox CK, Steinberger J (2012) Hyperleptinemia and hypoadiponectinemia in extreme pediatric obesity. Metab Syndr Relat Disord 10(2):123–127

    Google Scholar 

  40. Jéquier E (2002) Leptin signalin, adiposity, and energy balance. Ann N Y Acad Sci 967:379–388

    Google Scholar 

  41. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    Google Scholar 

  42. Floyd ZE, Stephens JM (2012) Controlling a master switch of adipocyte development and insulin sensitivity: covalent modifications of PPARγ. Biochim Biophys Acta 1822(7):1090–1095

    Google Scholar 

  43. Diamant M (2007) Brain insulin signalling in the regulation of energy balance and peripheral metabolism. Ideggyogy Sz 60(3–4):97–108

    Google Scholar 

  44. Begg DP, Woods SC (2012) The central insulin system and energy balance. Handb Exp Pharmacol 209:111–129

    Google Scholar 

  45. Andrews ZB (2011) Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 32(11):2248–2255

    Google Scholar 

  46. Parker JA, Bloom SR (2012) Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 63(1):18–30

    Google Scholar 

  47. Kojima M, Hosoda H, Date Y, Nakazato M, Matsudo H, Kangawa K (1999) Ghrelin is a growth hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Google Scholar 

  48. Cabral A, Suescun O, Zigman JM, Perello M (2012) Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS ONE 7(2):e31462

    Google Scholar 

  49. Cuomo R, D’Alessandro A, Andreozzi P, Vozzella L, Sarnelli G (2011) Gastrointestinal regulation of food intake: do gut motility, enteric nerves and entero-hormones play together? Minerva Endocrinol 36(4):281–293

    Google Scholar 

  50. Lazarczyk MA, Lazarczyk M, Grzela T (2003) Ghrelin: a recently discovered gut-brain peptide. Int J Mol Med 12:279–287

    Google Scholar 

  51. Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM (2004) Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J 18:439–456

    Google Scholar 

  52. Seoane LM, Tovar SA, Caminos JE, Nogueiras R, Diéguez C (2004) Ghrelina: un péptido regulador de la ingesta. Rev Esp Obes 2:31–42

    Google Scholar 

  53. Chen Z, Travers SP, Travers JB (2012) Activation of NPY receptors suppresses excitatory synaptic transmission in a taste-feeding network in the lower brain stem. Am J Physiol Regul Integr Comp Physiol 302(12):1401–1410

    Google Scholar 

  54. Zhaohui Z, Jingzhu Z, Guipeng D, Xuesong W, Yuanming Z, Yinping W, Yugui C (2012) Role of neuropeptide Y in regulating hypothalamus-pituitary-gonad axis in the rats treated with electro-acupuncture. Neuropeptides 46(3):133–139

    Google Scholar 

  55. Estemberg D, Sikora-Szubert A, Kowalska-Koprek U, Berner-Trabska M, Brzozowska M, Pasiński J, Swierczewski A, Karowicz-Bilińska A (2011) Body mass changes during pregnancy and concentration of insulin and neuropeptide Y in women with regard to the BMI. Ginekol Pol 82(12):892–899

    Google Scholar 

  56. Cone RD (1999) The central melanocortin system and energy homeostasis. Endocrinol Metab 19: 211 − 16

    Google Scholar 

  57. Pritchard LE, Armstrong D, Davies N, Oliver RL, Schmitz CA (2004) Agouti-related protein (83–132) is a competitive antagonist at the human melanocortin-4 receptor: no evidence for differential interactions with pro-opiomelanocortin-derived ligands. J Endocrinol 180:183–191

    Google Scholar 

  58. Fekete C, Wittmann G, Liposits Z, Lechan RM (2004) Origin of cocaine and anphetamine-regulated transcrip (cart)-inmunoreactive innervation of the hipothalamic paraventricular nucleus. J Comp Neurol 469:340–350

    Google Scholar 

  59. Szekely M, Petervari E, Balasko M (2010) Thermoregulation, energy balance, regulatory peptides: recent developments. Front Biosci (Schol Ed) 2:1009–1046

    Google Scholar 

  60. Nahon JL (2006) The melanocortins and melanin-concentrating hormone in the central regulation of feeding behavior and energy homeostasis. C R Biol 329(8):623–638

    Google Scholar 

  61. Wang Y, Ziogas DC, Biddinger S, Kokkotou E (2010) You deserve what you eat: lessons learned from the study of the melanin-concentrating hormone (MCH)-deficient mice. Gut 59(12):1625–1634

    Google Scholar 

  62. Reaux-Le Goazigo A, Bodineau L, De Mota N, Jeandel L, Chartrel N, Knauf C, Raad C, Valet P, Llorens-Cortes C (2011) Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic α-MSH release. Am J Physiol Endocrinol Metab 301(5):955–966

    Google Scholar 

  63. Peter JC, Zipfel G, Lecourt AC, Bekel A, Hofbauer KG (2010) Antibodies raised against different extracellular loops of the melanocortin-3 receptor affect energy balance and autonomic function in rats. J Recept Signal Transduct Res 30(6):444–453

    Google Scholar 

  64. Vaisse C, Clement K, Durand E, Hercber S, Guy-Grand B, Froguel P (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 106:253–262

    Google Scholar 

  65. Shintani M, Ogawa Y, Nakao K (2002) Obesity induced by abnormality in leptin receptor and melanocortin-4 receptor. Nihon Rinsho 60(2):404–409

    Google Scholar 

  66. Valassi E, Scacchi M, Cavagnini F (2008) Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis 18(2):158–168

    Google Scholar 

  67. Yada T, Kohno D, Maejima Y, Sedbazar U, Arai T, Toriya M, Maekawa F, Kurita H, Niijima A, Yakabi K (2012) Neurohormones, rikkunshito and hypothalamic neurons interactively control appetite and anorexia. Curr Pharm Des 18(31):4854–4864

    Google Scholar 

  68. Okada R, Kobayashi T, Yamamoto K, Nakakura T, Tanaka S, Vaudry H, Kikuyama S (2009) Neuroendocrine regulation of thyroid-stimulating hormone secretion in amphibians. Ann N Y Acad Sci 1163:262–270

    Google Scholar 

  69. Solomon A, Martínez JA (2006) Participación del sistema nervioso y del tracto gastrointestinal en la homeostasis energética. Rev Med Univ Navarra 50(1):27–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio González-Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González-Jiménez, E. (2014). Molecular Mechanisms Involved in the Regulation of Food Intake. In: Nóbrega, C., Rodriguez-López, R. (eds) Molecular Mechanisms Underpinning the Development of Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-12766-8_7

Download citation

Publish with us

Policies and ethics