Skip to main content

Genetic Contribution: Common Forms of Obesity

  • Chapter
  • First Online:
Molecular Mechanisms Underpinning the Development of Obesity

Abstract

The Genome-Wide Association Studies (GWAS) approach have help to found numerous genes for common traits and diseases, including the susceptibility to develop common obesity. Following the discovery of the first locus, by GWAS in 2007, more than 35 loci have been found associated with the increase of body mass index (BMI). However, all these loci explain only a small proportion of the heritability of common obesity (explaining ~ 1–2 % of the variance in BMI). Most of obesity susceptible genes found by GWAS have been performed in Caucasian adults. Several studies appear to replicate these findings in children and other ethnic groups, but our knowledge about the genetic of common obesity remains limited. The major part of these studies only assesses the genetic risk locus alone. However, the design of a combined genetic score could be a better tool to determine the susceptibility of obesity. In this chapter we report loci associated with obesity, which were found by GWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haslam DW, James WPT (2005) Obesity. Lancet 366:1197–1209

    Article  PubMed  Google Scholar 

  2. Swinburn B, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378:804–814

    Article  PubMed  Google Scholar 

  3. Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA (2010) The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes (Lond) 34:29–40

    Article  CAS  Google Scholar 

  4. Sandholt CH, Hansen T, Pedersen O (2012) Beyond the fourth wave of genome-wide obesity association studies. Nutr Diabetes 2:e37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mathes WF, Aylor DL, Miller DR, Churchill GA, Chesler EJ, de Villena FP-M et al (2011) Architecture of energy balance traits in emerging lines of the Collaborative Cross. Am J Physiol Endocrinol Metab 300:e1124–e1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Finucane MM, Stevens G, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 377:557–567

    Article  PubMed  Google Scholar 

  7. Xia Q, Grant SFA (2013) The genetics of human obesity. Ann N Y Acad Sci 1281:178–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. O’Rahilly S, Farooqi IS (2008) Human obesity: a heritable neurobehavioral disorder that is highly sensitive to environmental conditions. Diabetes 57:2905–2910

    Article  PubMed Central  PubMed  Google Scholar 

  9. Stunkard AJ, Sørensen TI, Hanis C, Teasdale TW, Chakraborty R, Schull WJ et al (1986) An adoption study of human obesity. N Engl J Med 314:193–198

    Article  CAS  PubMed  Google Scholar 

  10. Stunkard AJ, Foch TT, Hrubec Z (1986) A twin study of human obesity. JAMA 256:51–54

    Article  CAS  PubMed  Google Scholar 

  11. Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO et al (1977) The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol 106:284–285

    CAS  PubMed  Google Scholar 

  12. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH (1997) Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337:869–873

    Article  CAS  PubMed  Google Scholar 

  13. Danielzik S, Langnäse K, Mast M, Spethmann C, Müller MJ (2002) Impact of parental BMI on the manifestation of overweight 5–7 year old children. Eur J Nutr 41:132–138

    Article  PubMed  Google Scholar 

  14. Magnusson PKE, Rasmussen F (2002) Familial resemblance of body mass index and familial risk of high and low body mass index. A study of young men in Sweden. Int J Obes Relat Metab Disord 26:1225–1231

    Article  CAS  PubMed  Google Scholar 

  15. Mamun AA, O’Callaghan M, Callaway L, Williams G, Najman J, Lawlor DA (2009) Associations of gestational weight gain with offspring body mass index and blood pressure at 21 years of age: evidence from a birth cohort study. Circulation 119:1720–1727

    Article  PubMed  Google Scholar 

  16. Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990) Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6:1–27

    Article  CAS  PubMed  Google Scholar 

  17. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al (2006) The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14:529–644

    Article  Google Scholar 

  18. Hinney A, Vogel CIG, Hebebrand J (2010) From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry 19:297–310

    Article  PubMed Central  PubMed  Google Scholar 

  19. Razquin C, Marti A, Martinez JA (2011) Evidences on three relevant obesogenes: MC4R, FTO and PPARγ. Approaches for personalized nutrition. Mol Nutr Food Res 55:136–149

    Article  CAS  PubMed  Google Scholar 

  20. Boutin P, Dina C, Vasseur F, Dubois S, Corset L, Séron K et al (2003) GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol 1:E68

    Article  PubMed Central  PubMed  Google Scholar 

  21. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V et al (2005) Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 37:863–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T et al (2003) The SLC6A14 gene shows evidence of association with obesity. J Clin Invest 112:1762–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hinney A, Hebebrand J (2008) Polygenic obesity in humans. Obes Facts 1:35–42

    Article  CAS  PubMed  Google Scholar 

  24. Day FR, Loos RJF (2011) Developments in obesity genetics in the era of genome-wide association studies. J Nutrigenet Nutrigenomics 4:222–238

    Article  PubMed  Google Scholar 

  25. Bell CG, Walley AJ, Froguel P (2005) The genetics of human obesity. Nat Rev Genet 6:221–234

    Article  CAS  PubMed  Google Scholar 

  26. Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G et al (2005) The human obesity gene map: the 2004 update. Obes Res 13:381–490

    Article  PubMed  Google Scholar 

  27. Loos RJF (2012) Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 26:211–226

    Article  CAS  PubMed  Google Scholar 

  28. Mutch DM, Clément K (2006) Genetics of human obesity. Best Pract Res Clin Endocrinol Metab 20:647–664

    Article  CAS  PubMed  Google Scholar 

  29. Ramachandrappa S, Farooqi IS (2011) Review series Genetic approaches to understanding human obesity. 121. doi:10.1172/JCI46044.2080

    Google Scholar 

  30. Marian AJ (2012) Molecular genetic studies of complex phenotypes. Transl Res 159:64–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif) 6:287–303

    Article  CAS  Google Scholar 

  32. Saeed S, Bonnefond A, Manzoor J, Philippe J, Durand E, Arshad M et al (2014) Novel LEPR mutations in obese Pakistani children identified by PCR-based enrichment and next generation sequencing. Obesity (Silver Spring) 22:1112–1117

    Article  CAS  Google Scholar 

  33. Sällman Almén M, Rask-Andersen M, Jacobsson JA, Ameur A, Kalnina I, Moschonis G et al (2013) Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. Int J Obes (Lond) 37: 424–431

    Article  Google Scholar 

  34. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T et al (2006) A common genetic variant is associated with adult and childhood obesity. Science 312:279–283

    Article  CAS  PubMed  Google Scholar 

  35. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Albuquerque D, Nóbrega C, Manco L (2013) Association of FTO polymorphisms with obesity and obesity-related outcomes in Portuguese children. PLoS One 8:e54370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Rodríguez-López R, González-Carpio M, Serrano MV, Torres G, García de Cáceres MT, Herrera T et al (2010) Association of FTO gene polymorphisms and morbid obesity in the population of Extremadura (Spain). Endocrinol Nutr 57:203–209

    Article  PubMed  Google Scholar 

  38. Chang Y-C, Liu P-H, Lee W-J, Chang T-J, Jiang Y-D, Li H-Y et al (2008) Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes 57:2245–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hotta K, Nakata Y, Matsuo T, Kamohara S, Kotani K, Komatsu R et al (2008) Variations in the FTO gene are associated with severe obesity in the Japanese. J Hum Genet 53:546–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fang H, Li Y, Du S, Hu X, Zhang Q, Liu A et al (2010) Variant rs9939609 in the FTO gene is associated with body mass index among Chinese children. BMC Med Genet 11:136

    Article  PubMed Central  PubMed  Google Scholar 

  41. Mačeková S, Bernasovský I, Gabriková D, Bôžiková A, Bernasovská J, Boroňová I et al (2012) Association of the FTO rs9939609 polymorphism with obesity in Roma/Gypsy population. Am J Phys Anthropol 147:30–34

    Article  PubMed  Google Scholar 

  42. Grant SFA, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E et al (2008) Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One 3:e1746

    Article  PubMed Central  PubMed  Google Scholar 

  43. Song Y, You N-C, Hsu Y-H, Howard BV, Langer RD, Manson JE et al (2008) FTO polymorphisms are associated with obesity but not diabetes risk in postmenopausal women. Obesity (Silver Spring) 16:2472–2480

    Article  CAS  PubMed Central  Google Scholar 

  44. Deliard S, Panossian S, Mentch FD, Kim CE, Hou C, Frackelton EC et al (2013) The missense variation landscape of FTO, MC4R, and TMEM18 in obese children of African Ancestry. Obesity (Silver Spring) 21:159–163

    Article  CAS  Google Scholar 

  45. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726

    Article  CAS  PubMed  Google Scholar 

  46. Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115

    Article  PubMed Central  PubMed  Google Scholar 

  47. Heard-Costa NL, Zillikens MC, Monda KL, Johansson A, Harris TB, Fu M et al (2009) NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium. PLoS Genet 5:e1000539

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L et al (2009) Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet 5:e1000508

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E et al (2011) Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 8:e1001116

    Article  PubMed Central  PubMed  Google Scholar 

  50. Tung Y-CL, Yeo GSH (2011) From GWAS to biology: lessons from FTO. Ann N Y Acad Sci 1220:162–171

    Article  PubMed  Google Scholar 

  51. Peters T, Ausmeier K, Dildrop R, Rüther U (2002) The mouse Fused toes (Ft) mutation is the result of a 1.6-Mb deletion including the entire Iroquois B gene cluster. Mamm Genome 13:186–188

    Article  CAS  PubMed  Google Scholar 

  52. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC et al (2009) Inactivation of the Fto gene protects from obesity. Nature 458:894–898

    Article  CAS  PubMed  Google Scholar 

  53. Church C, Lee S, Bagg EAL, McTaggart JS, Deacon R, Gerken T et al (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 5:e1000599

    Article  PubMed Central  PubMed  Google Scholar 

  54. Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, Dolja VV, Falnes PØ (2008) Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res 36(17):5451–5461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Speakman JR, Rance KA, Johnstone AM (2008) Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring) 16:1961–1965

    Article  CAS  Google Scholar 

  59. Jacobsson J a, Schiöth HB, Fredriksson R (2012) The impact of intronic single nucleotide polymorphisms and ethnic diversity for studies on the obesity gene FTO. Obes Rev 13:1096–1109

    Article  Google Scholar 

  60. Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q et al (2010) Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464:1205–1209

    Article  CAS  PubMed  Google Scholar 

  61. Fawcett KA, Barroso I (2010) The genetics of obesity: FTO leads the way. Trends Genet 26:266–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Loos RJF, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I et al (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458

    Article  CAS  PubMed  Google Scholar 

  64. Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P et al (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40:716–718

    Article  CAS  PubMed  Google Scholar 

  65. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A et al (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24

    Article  CAS  PubMed  Google Scholar 

  66. Xi B, Chandak GR, Shen Y, Wang Q, Zhou D (2012) Association between common polymorphism near the MC4R gene and obesity risk: a systematic review and meta-analysis. PLoS One 7:e45731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41:25–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45:501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42:949–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Albuquerque D, Nóbrega C, Manco L (2013) The lactase persistence − 13910C>T polymorphism shows indication of association with abdominal obesity among Portuguese children. Acta Paediatr 102(4):153–157

    Article  Google Scholar 

  72. Kettunen J, Silander K, Saarela O, Amin N, Müller M, Timpson N et al (2010) European lactase persistence genotype shows evidence of association with increase in body mass index. Hum Mol Genet 19:1129–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Corella D, Arregui M, Coltell O, Portolés O, Guillem-Sáiz P, Carrasco P et al (2011) Association of the LCT-13910CT polymorphism with obesity and its modulation by dairy products in a Mediterranean population. Obesity (Silver Spring) 19:1707–1714

    Article  CAS  Google Scholar 

  74. Almon R, Álvarez-León EE, Serra-Majem L (2012) Association of the European lactase persistence variant (LCT-13910 CT polymorphism) with obesity in the Canary Islands. PLoS One 7:e43978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Kilpeläinen TO, Zillikens MC, Stančákova A, Finucane FM, Ried JS, Langenberg C et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43:753–760

    Article  PubMed Central  PubMed  Google Scholar 

  76. Yang J, Manolio T a, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM et al (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43:519–525

    Article  CAS  PubMed  Google Scholar 

  77. Llewellyn CH, Trzaskowski M, Plomin R, Wardle J (2013) Finding the missing heritability in pediatric obesity: the contribution of genome-wide complex trait analysis. Int J Obes (Lond) 37:1506–1509

    Article  CAS  Google Scholar 

  78. Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C et al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Albuquerque D, Nóbrega C, Rodríguez-López R, Manco L (2014) Association study of common polymorphisms in MSRA, TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, SEC16B, HOXB5 and OLFM4 genes with obesity-related traits among Portuguese children. J Hum Genet 59(6):307–313

    Article  CAS  PubMed  Google Scholar 

  80. Zhao J, Bradfield JP, Zhang H, Sleiman PM, Kim CE, Glessner JT et al (2011) Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. Obesity (Silver Spring) 19:2436–2439

    Article  CAS  Google Scholar 

  81. León-Mimila P, Villamil-Ramírez H, Villalobos-Comparán M, Villarreal-Molina T, Romero-Hidalgo S, López-Contreras B et al (2013) Contribution of common genetic variants to obesity and obesity-related traits in Mexican children and adults. PLoS One 8:e70640

    Article  PubMed Central  PubMed  Google Scholar 

  82. Zhao J, Grant SF (2011) Genetics of childhood obesity. J Obes 2011:845148.

    Google Scholar 

  83. Mitchell JA, Hakonarson H, Rebbeck TR, Grant SFA (2013) Obesity-susceptibility loci and the tails of the pediatric BMI distribution. Obesity (Silver Spring) 21:1256–1260

    Article  CAS  Google Scholar 

  84. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM et al (2012) A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet 44:526–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Ntalla I, Panoutsopoulou K, Vlachou P, Southam L, William Rayner N, Zeggini E et al (2013) Replication of established common genetic variants for adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann Hum Genet 77:268–274

    Article  PubMed Central  PubMed  Google Scholar 

  86. Slatkin M (2008) Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485

    Article  CAS  PubMed  Google Scholar 

  87. Hennig BJ, Fulford AJ, Sirugo G, Rayco-Solon P, Hattersley AT, Frayling TM et al (2009) FTO gene variation and measures of body mass in an African population. BMC Med Genet 10:21

    Article  PubMed Central  PubMed  Google Scholar 

  88. Ohashi J, Naka I, Kimura R, Natsuhara K, Yamauchi T, Furusawa T et al (2007) FTO polymorphisms in oceanic populations. J Hum Genet 52:1031–1035

    Article  PubMed  Google Scholar 

  89. Hassanein MT, Lyon HN, Nguyen TT, Akylbekova EL, Waters K, Lettre G et al (2010) Fine mapping of the association with obesity at the FTO locus in African-derived populations. Hum Mol Genet 19:2907–2916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Wen W, Cho Y-S, Zheng W, Dorajoo R, Kato N, Qi L et al (2012) Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet 44:307–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange LA et al (2013) A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet 45:690–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Tan L-J, Zhu H, He H, Wu K-H, Li J, Chen X-D et al (2014) Replication of 6 obesity genes in a meta-analysis of genome-wide association studies from diverse ancestries. PLoS One 9:e96149

    Article  PubMed Central  PubMed  Google Scholar 

  93. Horne BD, Anderson JL, Carlquist JF, Muhlestein JB, Renlund DG, Bair TL et al (2005) Generating genetic risk scores from intermediate phenotypes for use in association studies of clinically significant endpoints. Ann Hum Genet 69:176–186

    Article  CAS  PubMed  Google Scholar 

  94. Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J et al (2013) Development and evaluation of a genetic risk score for obesity. Biodemography Soc Biol 59:85–100

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albuquerque, D., Nóbrega, C. (2014). Genetic Contribution: Common Forms of Obesity. In: Nóbrega, C., Rodriguez-López, R. (eds) Molecular Mechanisms Underpinning the Development of Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-12766-8_4

Download citation

Publish with us

Policies and ethics