Skip to main content

Obesity Study: Animal Models

  • Chapter
  • First Online:
Molecular Mechanisms Underpinning the Development of Obesity

Abstract

Obesity is becoming a worldwide problem, as it is associated with serious comorbidities, including a high incidence of type II diabetes, cardiovascular disease and many forms of cancer. Obesity is defined as increased adipose mass resulting from chronic excess of energy intake over energy expenditure. Energy homeostasis including food intake and energy consumption has been demonstrated to be regulated predominantly by orexigenic and anorexigenic systems in the hypothalamus. The blood-born hormones, such as leptin, insulin and ghrelin, modulate activities of the orexigenic and anorexigenic neuropeptide-containing neurons in the hypothalamus. In addition, epidemiological studies have demonstrated that the incidence of depression and cognitive impairment is high in obese subjects compared to normal body weight subjects. Therefore, obese animal models that are pathophysiologically relevant to human obesity are very useful for understanding the mechanisms underlying the development of obesity and obesity-associated syndromes. This chapter shows representative animal obese models that are used to analyze pathophysiological properties of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  2. Simon GE, Von Korff M, Saunders K et al (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63:824–830

    Article  PubMed Central  PubMed  Google Scholar 

  3. Malnick SD, Knobler H (2006) The medical complications of obesity. QJM 99:565–579

    Article  CAS  PubMed  Google Scholar 

  4. Marcus MD, Wildes JE (2009) Obesity: is it a mental disorder? Int J Eat Disord 42:739–753

    Article  PubMed  Google Scholar 

  5. Elias MF, Elias PK, Sullivan LM et al (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes 27:260–268

    Article  CAS  Google Scholar 

  6. Whitmer RA, Gunderson EP, Barrett-Connor E et al (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330:1360–1364

    Article  PubMed Central  PubMed  Google Scholar 

  7. Barsh GS, Farooqi IS, O’Rahilly S (2000) Genetics of body-weight regulation. Nature 404:644–651

    CAS  PubMed  Google Scholar 

  8. Schwartz MW, Woods SC, Porte D Jr et al (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  9. Morton1 GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  CAS  PubMed  Google Scholar 

  10. Joel K, Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    Article  Google Scholar 

  11. Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 71:1195–1204

    Article  CAS  PubMed  Google Scholar 

  12. Lu D, Willard D, Patel IR et al (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371:779–802

    Article  Google Scholar 

  13. Millar SE, Miller MW, Stevens ME et al (1995) Expression and transgenic studies of the mouse agouti gene provide insight into mechanisms by which mammalian coat color patterns are generated. Development 121:3223–3232

    CAS  PubMed  Google Scholar 

  14. Michaud EJ, Bultman SJ, Stubbs LJ et al (1993) The embryonic lethality of homozygous lethal yellow mice (Ay/Ay) is associated with the disruption of a novel RNA-binding protein. Gene Dev 7:1203–1213

    Article  CAS  PubMed  Google Scholar 

  15. Duhl DM, Stevens ME, Vrieling H et al (1994) Pleiotropic effects of the mouse lethal yellow (Ay) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs. Development 120:1695–1708

    CAS  PubMed  Google Scholar 

  16. Michaud EJ, Bultman SJ, Klebig ML et al (1994) A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Pro Natl Acad Sci U S A 91:2562–2566

    Article  CAS  Google Scholar 

  17. Kucera GT, Bortner DM, Rosenberg M (1996) Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominat coat color phenotypes of spontaneous mutants. Dev Biol 173:162–173

    Article  CAS  PubMed  Google Scholar 

  18. Mynatt RL, Miltenberger RJ, Klebig ML et al (1997) Combined effects of insulin treatment and adipose tissue-specific agouti expression on the development of obesity. Pro Natl Acad Sci U S A 94:919–922

    Article  CAS  Google Scholar 

  19. Kwon HY, Bultman SJ, Löffler C et al (1994) Molecular structure and chromosomalmapping of the human homolog of the agouti gene. Proc Natl Acad Sci U S A 91:9760–9764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wilson BD, Ollmann MM, Kang L et al (1995) Structure and function of ASP, the human homolog of the mouse agouti gene. Hum Mol Genet 4:223–230

    Article  CAS  PubMed  Google Scholar 

  21. Smith SR, Gawronska-Kozak B, Janderov´a L et al (2003) Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes. Diabetes 52:2914–2922

    Article  CAS  PubMed  Google Scholar 

  22. Kucera GT, Bortner DM, Rosenberg MP (1996) Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants. Dev Biol 173:162–173

    Article  CAS  PubMed  Google Scholar 

  23. Cone RD, Lu D, Koppula S et al (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–318

    CAS  PubMed  Google Scholar 

  24. Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    CAS  PubMed  Google Scholar 

  25. Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59:719–809

    CAS  PubMed  Google Scholar 

  26. Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9:287–293

    Article  CAS  PubMed  Google Scholar 

  27. Hummel KP, Dickie MM, Coleman DL (1966) Diabetes, a new mutation in the mouse. Science 153:1127–1128

    Article  CAS  PubMed  Google Scholar 

  28. Coleman DL, Hummel KP (1967) Studies with the mutation, diabetes, in the mouse. Diabetologia 3:238–248

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  30. Zhang F, Basinski MB, Beals JM et al (1997) Crystal structure of the obese protein leptin-E100. Nature 387:206–209

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton BS, Paglia D, Kwan AY et al (1995) Increased obese mRNA expression in omental fat cells from massively obese humans. Nat Med 1:953–956

    Article  CAS  PubMed  Google Scholar 

  32. Harris RB, Ramsay TG, Smith SR et al (1996) Early and late stimulation of ob mRNA expression in meal-fed and overfed rats. J Clin Invest 97:2020–2026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  PubMed  Google Scholar 

  34. Hummel KP, Dickie MM, Coleman DL (1966) Diabetes, a new mutation in the mouse. Science 153:1127–1128

    Article  CAS  PubMed  Google Scholar 

  35. Tartaglia LA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  CAS  PubMed  Google Scholar 

  36. Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  CAS  PubMed  Google Scholar 

  37. Lee GH, Proenca R, Montez JM et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  CAS  PubMed  Google Scholar 

  39. Koletsky S (1973) Obese spontaneously hypertensive rats-a model for study of atherosclerosis. Exp Mol Pathol 19:53–60

    Article  CAS  PubMed  Google Scholar 

  40. Koletsky S (1975) Animal model: obese hypertensive rat. Am J Pathol 81(2):463–466

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–142

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Yen TT, Shaw WN, Yu PL (1977) Genetics of obesity of Zucker rats and Koletsky rats. Heredity 38:373–377

    Article  CAS  PubMed  Google Scholar 

  43. Takaya K, Ogawa Y, Hiraoka J et al (1996) Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14:130–131

    Article  CAS  PubMed  Google Scholar 

  44. Takaya K, Ogawa Y, Isse N et al (1996) Molecular cloning of rat leptin receptor isoform complementary DNAs—identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun 225:75–83

    Article  CAS  PubMed  Google Scholar 

  45. Ishizuka T, Ernsberger P, Liu S et al (1998) Phenotypic consequences of a nonsense mutation in the leptin receptor gene (fak) in obese spontaneously hypertensive Koletsky rats (SHROB). J Nutr 128:2299–2306

    CAS  PubMed  Google Scholar 

  46. Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipemia. Ann N Y Acad Sci 131:447–458

    Article  CAS  PubMed  Google Scholar 

  47. Zucker LM, Zucker TF (1961) Fatty, a new mutation in the rat. J Hered 52:275

    Google Scholar 

  48. Iida M, Murakami T, Ishida K (1996) Phenotype-linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 222:19–26

    Article  CAS  PubMed  Google Scholar 

  49. Iida M, Murakami T, Ishida K et al (1996b) Substitution at codon 269 (glutamine→proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 224:597–604

    Google Scholar 

  50. White DW, Wang DW, Chua SC et al (1997) Constitutive and impaired signaling of leptin receptors containing the Gln→Pro extracellular domain fatty mutation. Proc Natl Acad Sci U S A 94:10657–10662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Yamashita T, Murakami T, Iida M et al (1997) Leptin receptor of Zucker fatty rat performs reduced signal transduction. Diabetes 46:1077–1080

    Article  CAS  PubMed  Google Scholar 

  52. Cusin I, Rohner-Jeanrenaud F, Stricker-Krongrad A et al (1996) The weight-reducing effect of an intracerebroventricular bolus injection of leptin in genetically obese fa/fa rats. Reduced sensitivity compared with lean animals. Diabetes 45:1446–1450

    Article  CAS  PubMed  Google Scholar 

  53. Tofovic SP, Kusaka H, Kost CK Jr et al (2000) Renal function and structure in diabetic, hypertensive, obese ZDF × SHHF-hybrid rats. Ren Fail 22:387–406

    Article  CAS  PubMed  Google Scholar 

  54. Peterson RG, Shaw WN, Neel M-A et al (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J 32:16–19

    Article  Google Scholar 

  55. Schlenker EH, Tamura T, Gerdes AM (2003) Gender-specific effects of thyroid hormones on cardiopulmonary function in SHHF rats. J Appl Physiol 95:2292–2298

    CAS  PubMed  Google Scholar 

  56. Kawano K, Hirashima T, Mori S et al (1992) Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka long-evans tokushima fatty (OLETF) strain. Diabetes 41:1422–1428

    Article  CAS  PubMed  Google Scholar 

  57. Moran TH, Bi S (2006) Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans R Soc Lond B Biol Sci 361:1211–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Funakoshi A, Miyasaka K, Jimi A et al (1994) Little or no expression of the cholecystokinin-A receptor gene in the pancreas of diabetic rats (Otsuka long-evans tokushima fatty = OLETF rats). Biochem Biophys Res Commun 199:482–488

    Article  CAS  PubMed  Google Scholar 

  59. Otsuki M, Akiyama T, Shirohara H et al (1995) Loss of sensitivity to cholecystokinin stimulation of isolated pancreatic acini from genetically diabetic rats. Am J Physiol 268:E531–E536

    CAS  PubMed  Google Scholar 

  60. Takiguchi S, Takata Y, Funakoshi A et al (1997) Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene 197:169–175

    Article  CAS  PubMed  Google Scholar 

  61. Ghibaudi L, Cook J, Farley C et al (2002) Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats. Obes Res 10:956–963

    Article  CAS  PubMed  Google Scholar 

  62. Johnston SL, Souter DM, Tolkamp BJ et al (2007) Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity 15:600–606

    Article  PubMed  Google Scholar 

  63. Ikemoto S, Takahashi M, Tsunoda N et al (1996) High-fat diet-induced hyperglycemia and obesity inmice: differential effects of dietary oils. Metabolism 45:1539–1546

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, Storlien LH, Huang XF (2002) Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am J Physiol Endocrinol Metab 282:E1352–E1359

    CAS  PubMed  Google Scholar 

  65. Buettner R, Parhofer KG, Woenckhaus M et al (2006) Defining high-fat-diet ratmodels: metabolic andmolecular effects of different fat types. J Mol Endocrinol 36:485–501

    Article  CAS  PubMed  Google Scholar 

  66. Surwit RS, Feinglos MN, Rodin J et al (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44:645–651

    Article  CAS  PubMed  Google Scholar 

  67. Chicco A, D’Alessandro ME, Karabatas L et al (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 133:127–133

    CAS  PubMed  Google Scholar 

  68. Banks WA, Coon AB, Robinson SM et al (2004) Triglycerides induce leptinresistance at the blood-brain barrier. Diabetes 53:1253–1260

    Article  CAS  PubMed  Google Scholar 

  69. Benoit SC, Kemp CJ, Elias CF et al (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119:2577–2589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Clegg DJ, Gotoh K, Kemp C et al (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103:10–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299

    Article  CAS  PubMed  Google Scholar 

  72. Woods SC, D’Alessio DA, Tso P et al (2004) Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiol Behav 83:573–578

    Article  CAS  PubMed  Google Scholar 

  73. West DB, Boozer CN, Moody DL et al (1992) Dietary obesity in nine inbred mouse strains. Am J Physiol 262:R1025-R1032

    CAS  PubMed  Google Scholar 

  74. Collins S, Martin TL, Surwit RS et al (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248

    Article  CAS  PubMed  Google Scholar 

  75. Rossmeisl M, Rim JS, Koza RA et al (2003) Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52:1958–1966

    Article  CAS  PubMed  Google Scholar 

  76. Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451–472

    CAS  PubMed  Google Scholar 

  77. Perez C, Fanizza LJ, Sclafani A (1999) Flavor preferences conditioned by intragastric nutrient infusions in rats fed chow or a cafeteria diet. Appetite 32:155–170

    Article  CAS  PubMed  Google Scholar 

  78. Rogers PJ, Blundell JE (1984) Meal patterns and food selection during the development of obesity in rats fed a cafeteria diet. Neurosci Biobehav Rev 8:441–453

    Article  CAS  PubMed  Google Scholar 

  79. Rothwell NJ, Stock MJ (1979) Combined effects of cafeteria and tube-feeding on energy balance in the rat. Proc Nutr Soc 38:5A

    Article  CAS  PubMed  Google Scholar 

  80. Challis BG, Coll AP, Yeo GS et al (2004) Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc Natl Acad Sci U S A 101:4695–4700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Yaswen L, Diehl N, Brennan MB et al (1999) Obesity in the mouse model of proopiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070

    Article  CAS  PubMed  Google Scholar 

  82. O’Rahilly S (2009) Human genetics illuminates the paths to metabolic disease. Nature 462:307–314

    Article  PubMed  Google Scholar 

  83. Huszar D, Lynch CA, Fairchild-Huntress V et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  CAS  PubMed  Google Scholar 

  84. Ste Marie LM, Miura GI, Marsh DJ et al (2000) A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci U S A 97:12339–12344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Mul JD, van Boxtel R, Bergen DJ et al (2012) Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity 20:612–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Butler AA, Kesterson RA, Khong K et al (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518–3521

    Article  CAS  PubMed  Google Scholar 

  87. Brobeck JR, Tepperman J, Long CNH (1943) Experimental hypothalamic hyperphagia in the Albino rat. Yale J Biol Med 15:831–853

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Brooks CM, Lockwood RA, Wiggins ML (1946) A study of the effect of hypothalamic lesions on the eating habits of the albino rat. Am J Physiol 147:735–741

    CAS  PubMed  Google Scholar 

  89. Cox JE, Powley TL (1981) Prior vagotomy blocks VMH obesity in pair-fed rats. Am J Physiol 240:E573–E583

    CAS  PubMed  Google Scholar 

  90. King BM (1991) Ventromedial hypothalamic obesity: a reexamination of the irritative hypothesis. Neurosci Biobehav Rev 15:341–347

    Article  CAS  PubMed  Google Scholar 

  91. King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87:221–244

    Article  CAS  PubMed  Google Scholar 

  92. Penicaud L, Larue-Achagiotis C, Le Magnen J (1983) Endocrine basis for weight gain after fasting or VMH lesion in rats. Am J Physiol 245:E246–E252

    CAS  PubMed  Google Scholar 

  93. Dawson R, Wallace DR, Gabriel SM (1989) A pharmacological analysis of food intake regulation in rats treated neonatally with Monosodium L-Glutamate (MSG). Pharmacol Biochem Behav 32:391–398

    Article  CAS  PubMed  Google Scholar 

  94. Hirata AE, Andrade IS, Vaskevicius P et al (1997) Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res 30:671–674

    Article  CAS  PubMed  Google Scholar 

  95. Morrison JFB, Shehab S, Sheen R et al (2008) Sensory and autonomic nerve changes in the monosodium glutamatetreated rat: a model of type II diabetes. Exp Physiol 93:213–222

    Article  CAS  PubMed  Google Scholar 

  96. Nemeroff CB, Lipton MA, Kizer JS (1978) Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev Neurosci 1:102–109

    Article  CAS  PubMed  Google Scholar 

  97. Bergen HT, Mizuno TM, Taylor J et al (1998) Hyperphagia and weight gain after gold-thioglucose: relation to hypothalamic neuropeptide Y and proopiomelanocortin. Endocrinology 139:4483–4488

    CAS  PubMed  Google Scholar 

  98. Young JK (1992) Hypothalamic lesions increase neuronal immunoreactivity for neuropeptide Y. Brain Res Bull 29:375–380

    Article  CAS  PubMed  Google Scholar 

  99. Young JK, McKenzie JC, Brady LS et al (1994) Hypothalamic lesions increase levels of neuropeptide Y mRNA in the arcuate nucleus of mice. Neurosci Lett 165:13–17

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Inui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Katsuura, G., Kawamura, N., Nishida, M., Amitani, H., Asakawa, A., Inui, A. (2014). Obesity Study: Animal Models. In: Nóbrega, C., Rodriguez-López, R. (eds) Molecular Mechanisms Underpinning the Development of Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-12766-8_10

Download citation

Publish with us

Policies and ethics