Skip to main content

Synergy as Strategy for the Energetic Valorisation of Waste Focused in Transport

  • Conference paper
  • First Online:
Project Management and Engineering

Part of the book series: Lecture Notes in Management and Industrial Engineering ((LNMIE))

  • 1492 Accesses

Abstract

Industrial by-products synergy is potentially capable of generating an industrial ecosystem that minimizes waste production. This article presents a case of synergy of a by-product use to produce fuel for the transport sector. This sector is selected because public administration is focused in reducing its fuel consumption. The initial by-product is dairy industry waste. This waste could be seen as a treatment problem, but can also be presented as an opportunity for energy recovery. Thinking on energy recovery, anaerobic digestion is the most suitable alternative. The biogas obtained can be upgraded for use in vehicles. Synergistic processes will be evaluated in order to use the by-products generated. Environmental sustainability analysis will be made using a Life Cycle Analysis tool. Carbon Footprint and Energy Ratio tools are also used. This work proposes an industrial ecosystem as closed as possible to minimize the required inputs and waste production, improving the sustainability of the waste treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barraza C, Collao V, Espinoza C, Moya F, Thun G, Torres M (2009) Producción de biodiésel a partir de microalgas. Pontificia Universidad Católica de Valparaiso Facultad de Ingeniería, Escuela de Ingeniería Bioquímica

    Google Scholar 

  2. Campbell PK, Beer T, Batten D (2009) Greenhouse gas sequestration by algae—energy and greenhouse gas life cycle studies. CSIRO Energy Transformed Flagship, Aspendale

    Google Scholar 

  3. Collet P, Hélias A, Lardon L, Ras M, Goy R, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technol 102:207–214

    Article  Google Scholar 

  4. Ecoinvent (2007) Life cycle inventories of bioenergy. Ecoinvent v2 database

    Google Scholar 

  5. Fernandes D, Lapa N, Olson L (2010) Chlorella sp. Coagulation—flocculation by inducing a modification on the pH broth médium. Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa

    Google Scholar 

  6. Gronauer A, Helm M, Schön H (1997) Verfahren und Konzepte der Biofaballkompostierung. Vergleich—Bewertung—Empfehlung. Bayrische Landesanstalt für Landtechnik der tu München-Weihenstestephan

    Google Scholar 

  7. Hassebrauck M, Ermel M (1996) Two examples of termal drying of sewage sludge. Water Sci Technol 33:235–242

    Article  Google Scholar 

  8. Hurst T (2010) Canadian cement plant becomes first to capture CO2 in algae. Earth and Industry

    Google Scholar 

  9. IEA Bioenergy (1999) Biogas upgrading and utilization. Task 24: energy from biological conversion of organic waste

    Google Scholar 

  10. International Institute for Sustainable Development (IISD) (2012) By-product synergy and industrial ecology

    Google Scholar 

  11. Jungbluth N, Faist M, Dinkel F, Stetter C, Doka G, Chudacoff M, Dauriat A, Gnansaunou E, Sutter J, Spielmann M, Kljun N, Keller M, Scheleiss K (2007) Life cycle inventories of bioenergy. Ecoinvent report No 17

    Google Scholar 

  12. Lardon A, Hélias A, Sialve B, Steyer J, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Policy Anal 43:6475–6481

    Google Scholar 

  13. Luiña R, Álvarez V, Ortega F, Martínez G (2012) Evaluation of the environmental feasibility of using Biogas for bus fletes supply. Area de Proyectos de Ingeniería, Universidad de Oviedo

    Google Scholar 

  14. Lundquist TJ, Woertz IC, Quinn NW, Benemann JR (2010) A realistic technology an engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California

    Google Scholar 

  15. Mangan A, Berkebile R, McLennan JF, Svec W, Sauer BJ, Schneider SH, Mann R, Silva O (2003) Kansas City regional by-product synergy initiative feasibility study. Mid-America Regional Council Solid Waste Management District

    Google Scholar 

  16. Marañón E, Fernández Y, Castrillón L (2009) Manual de estado del arte de la co-digestion anaerobia de residuos ganaderos y agroindustriales. Universidad de Oviedo

    Google Scholar 

  17. Network for Business Innovation and Sustainability (NBIS) (2012) By-product synergy Northwest. http://nbis.org/programs/by-product-synergy-nw-2/ Access Date: 11/11/2012

  18. Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy

    Google Scholar 

  19. Sazdanoff N (2006) Modeling and simulation of the Algae to biodiesel fuel cycle. Department of Mechanical Engineering, The Ohio State University

    Google Scholar 

  20. Schleiss K, Edelmann W (1994) Stromproduktion aus der Feststoff-Vergärung. Bundesamt für Energie und Biogasforum Schweiz, Baar

    Google Scholar 

  21. Tampier M, Alabi AO, Bibeau E (2009) Microalgae technologies processes for biofuels/bioenergy production in British Columbia: current technology, suitability & barriers to implementation. The British Columbia Innovation Council

    Google Scholar 

  22. Viessman W, Hammer MJ (2004) Water supply and pollution control. Pearson Pretince Hall, Upper Saddle River

    Google Scholar 

  23. Wernick I, Ausubel J (1997) Industrial ecology: some directions for research. Program for the Human Environment, The Rockefeller University New York. ISBN 0-9646419-0-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Álvarez, J., Luiña, R., Ortega, F., Lobo, P. (2015). Synergy as Strategy for the Energetic Valorisation of Waste Focused in Transport. In: Ayuso Muñoz, J., Yagüe Blanco, J., Capuz-Rizo, S. (eds) Project Management and Engineering. Lecture Notes in Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12754-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12754-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12753-8

  • Online ISBN: 978-3-319-12754-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics