Skip to main content

The Complex Systems Approach to Protocells

  • Conference paper
  • First Online:
Book cover Advances in Artificial Life and Evolutionary Computation (WIVACE 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 445))

Included in the following conference series:

Abstract

Systems biology is mainly focussed upon the description of specific biological items, like for example specific organisms, or specific organs in a class of animals, or specific genetic-metabolic circuits. It therefore leaves open the issue of the search for general principles of biological organization, which apply to all living beings or to at least to broad classes. So the main challenge of complex systems biology is that of looking for general principles in biological systems, in the spirit of complex systems science which searches for similar features and behaviors in various kinds of systems.

I present here some strong arguments in favor of the soundness of this approach, by reviewing data concerning allometric scaling laws and models, focusing in particular on the claim that evolution tends to drive systems towards critical states.

Then I discuss protocells, in particular the very important phenomenon of synchronization between the rate of growth of the proto-genetic material and that of the lipid container, that is a necessary condition for a sustained growth of a population of protocells). Highly simplified, generic models show that such synchronization can be an emergent property under a very wide set of different hypotheses about protocell architectures and kinetic models. Moreover, I discuss the emergence of autocatalytic sets of collectively replicating molecules in a small protocell with a semipermeable membrane, arguing that local differences in the chemical composition of the environment can give rise to a heterogeneous population of protocells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (The term “Complex Systems Biology” was introduced a few years ago by Kaneko [19]. Although it not of widespread use, it seems particularly well suited to indicate an approach to biology which is well rooted in complex systems science.)

  2. 2.

    For example, ceteris paribus, highly connected networks are more disordered than poorly connected ones. This is however a property of the set of networks with those parameter values, and single network realizations can behave in a way different from the typical behavior of their class.

  3. 3.

    Of course some hypotheses need to be made; in this case, the key hypothesis is that the level of cellular noise is high in stem cells and decreases during differentiation. There are some indications in favour of this hypothesis, which can be subject to experimental testing.

  4. 4.

    This remark refers to the kind of protocells we are interested in, i.e. those that are built by self-organization and self-assembly starting from various types of molecules, like nucleic acids, polypetides, lipids, etc., avoiding however those that can be obtained only by living beings, like e.g. specialized enzymes. There are other types of entities that are also called protocells, like those that have been obtained by inserting a synthetic genome into a bacterial cell.

References

  1. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bagley, R.J., Farmer, J.D., Kauffman, S.A., Packard, N.H., Perelson, A.S., Stadnyk, I.M.: Modeling adaptive biological systems. Bio Syst. 23(2–3), 113–137 (1989)

    Google Scholar 

  3. Carletti, T., Serra, R., Poli, I., Villani, M., Filisetti, A.: Sufficient conditions for emergent synchronization in protocell models. J. Theor. Biol. 254, 741–751 (2008)

    Article  MathSciNet  Google Scholar 

  4. Damiani, C., Kauffman, S.A., Serra, R., Villani, M., Colacci, A.: Information transfer among coupled random boolean networks. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 1–11. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Damiani, C., Serra, R., Villani, M., Kauffman, S.A., Colacci, A.: Cell-cell interaction and diversity of emergent behaviours. IET Syst. Biol. 5(2), 137–144 (2011)

    Article  Google Scholar 

  6. Dyson, F.J.: Origins of Life. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  7. Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization. Part A: Emergence of the hypercycle. Die Naturwiss. 64(11), 541–565 (1977)

    Article  Google Scholar 

  8. Farmer, J., Kauffman, S.A., Packard, N.: Autocatalytic replication of polymers. Physica D: Nonlinear Phenom. 220, 50–67 (1986)

    Article  MathSciNet  Google Scholar 

  9. Filisetti, A., Serra, R., Carletti, T., Poli, I., Villani, M.: Synchronization phenomena in protocell models. BRL: Biophys. Rev. Lett. 3(1/2), 325–342 (2008)

    Google Scholar 

  10. Filisetti, A., Serra, R., Villani, M., Fuechslin, R., Packard, N., Kauffman, S.A. Poli, I.: A stochastic model of catalytic reaction networks. In: proceedings of ECCS 2010, (European Conference on Complex Systems). CD-Rom Track E, paper p29. ECCS 10 best paper award (2010)

    Google Scholar 

  11. Filisetti, A., Graudenzi, A., Serra, R., Villani, M., Fuechslin, R., Packard, N., Kauffman, S.A., Poli, I.: A stochastic model of autocatalytic reaction networks. Theory Biosci. 131(2), 85–93 (2011)

    Article  Google Scholar 

  12. Filisetti, A., Graudenzi, A., Serra, R., Villani, M., De Lucreazia, D., Fuechslin, R., Packard, N., Kauffman, S.A., Poli, I.: A stochastic model of the emergence of autocatalytic cycles. J. Syst. Chem. 2(2), 2 (2011)

    Article  Google Scholar 

  13. Filisetti, A., Serra, R., Carletti, T., Villani, M., Poli, I.: Non-linear protocell models: synchronization and chaos. Europhys. J. B 77, 249–256 (2010)

    Google Scholar 

  14. Ganti, T.: Chemoton Theory (Vol. I. Theory of Fluid Machineries; Vol. II: Theory of Living Systems). KluwerAcademic/Plenum Publishers, New York (2003)

    Google Scholar 

  15. Graudenzi, A., Serra, R., Villani, M., Damiani, C., Colacci, A., Kauffman, S.A.: Dynamical properties of a model of gene regulatory network with memory. J. Comput. Biol. 18(10), 1291–1303 (2011)

    Article  MathSciNet  Google Scholar 

  16. Graudenzi, A., Serra, R., Villani, M., Damiani, C., Colacci, A., Kauffman, S.A.: Robustness analysis of a model of gene regulatory network with memory. J. Comput. Biol. 18(4), 559–577 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hordijk, W., Hein, J., Steel, M.: Autocatalytic Sets and the Origin of Life. Entropy 12(7), 1733–1742 (2010)

    Article  Google Scholar 

  18. Jain, S., Khrishna, S.: Autocatalytic sets and the growth of complexity in an evolutionary model. Phys. Rev. Lett. 81, 5684–5687 (1998)

    Article  Google Scholar 

  19. Kaneko, K.: Complex Systems Biology. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)

    Google Scholar 

  21. Kauffman, S.A.: At Home in the Universe. Oxford University Press, New York (1995)

    Google Scholar 

  22. Langton, C.G.: Life at the edge of chaos. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II. SFI studies in the sciences of complexity, pp. 41–91. Addison Wesley, Reading (1995)

    Google Scholar 

  23. Munteanu, A., Attolini, C.S., Rasmussen, S., Ziock, H., Sole, R.V.: Generic Darwinian selection in protocell assemblies. Phil. Trans. Roy. Soc. Lon. B 362, 1847 (2007)

    Article  Google Scholar 

  24. Noble, D.: The Music of Life. Oxford University Press, Oxford (2006)

    Google Scholar 

  25. Packard, N.: Adaptation toward the edge of chaos. In: Kelso, J., Mandell, A., Shle-singer, M. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)

    Google Scholar 

  26. Ramo, P., Kesseli, Y., Yli-Harja, O.: Perturbation avalanches and criticality in gene regulatory networks. J. Theor. Biol. 242, 164 (2006)

    Article  MathSciNet  Google Scholar 

  27. Rasmussen, S., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Bedeau, M.A.: Transitions from non living to living matter. Science 303, 963–965 (2004)

    Article  Google Scholar 

  28. Rasmussen, S., Bedeau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F.: Protocells. MIT Press, Cambridge (2009)

    Google Scholar 

  29. Ribeiro, A.S., Kauffman, S.A.: Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247, 743–755 (2007)

    Article  MathSciNet  Google Scholar 

  30. Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. PNAS 102, 13439–13444 (2005)

    Article  Google Scholar 

  31. Serra, R., Filisetti, A., Villani, M., Graudenzi, A., Damiani, C., Panini, T.: A stochastic model of catalytic reaction networks in protocells. Nat. Comput. 13, 367–377 (2014)

    Article  MathSciNet  Google Scholar 

  32. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)

    Article  MathSciNet  Google Scholar 

  33. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449–460 (2007)

    Article  MathSciNet  Google Scholar 

  34. Serra, R., Carletti, T., Poli, I.: Synchronization phenomena in surface reaction models of protocells. Artif. Life 13, 1–16 (2007)

    Article  Google Scholar 

  35. Serra, R., Villani, M., Damiani, C., Graudenzi, A., Colacci, A.: The diffusion of perturbations in a model of coupled random boolean networks. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 315–322. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  36. Serra, R., Villani, M., Graudenzi, A., Colacci, A., Kauffman, S.A.: The simulation of gene knock-out in scale-free random boolean models of genetic networks. Netw. Heterogen. Media 3(2), 333–343 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Serra, R., Villani, M., Barbieri, A., Kauffman, S.A., Colacci, A.: On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J. Theor. Biol. 265, 185–193 (2010)

    Article  MathSciNet  Google Scholar 

  38. Serra, R., Villani, M.: Mechanism for the formation of density gradients through semipermeable membranes. Phys. Rev. E 87(6), 062814 (2013)

    Article  Google Scholar 

  39. Villani, M., Serra, R., Ingrami, P., Kauffman, S.A.: Coupled random boolean network forming an artificial tissue. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 548–556. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PLoS ONE 6(3), e17703 (2011)

    Article  Google Scholar 

  41. West, G.B., Brown, J.H.: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exper. Biol. 208, 1575 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

I am indebted to my colleague Marco Villani, with whom I shared a 15 years long research experience in complex systems biology, to Stuart Kauffman, for some wonderful discussions, and to my former Ph.D. students (and now post-doc collaborators) Alessandro Filisetti, Alex Graudenzi, Chiara Damiani who made excellent work in exploring the properties of RBNs and of protocell models and in shaping the ideas described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Serra, R. (2014). The Complex Systems Approach to Protocells. In: Pizzuti, C., Spezzano, G. (eds) Advances in Artificial Life and Evolutionary Computation. WIVACE 2014. Communications in Computer and Information Science, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-12745-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12745-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12744-6

  • Online ISBN: 978-3-319-12745-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics