Skip to main content

How Nanoparticles Can Solve Resistance and Limitation in PDT Efficiency

  • Chapter
  • First Online:
Resistance to Photodynamic Therapy in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 5))

Abstract

PDT efficiency photosensitizers can be improved by different ways: development of targeted photosensitizers that also present rapid clearance from normal tissues, photosensitizers that own better photophysical properties (such as absorption in the red to use light that can better penetrate tissue, limited photobleaching), photosensitizers whose pharmacokinetics matched to the application, improve light equipments and the selective delivery of the activating light. In this chapter, our aim is to address how nanoparticles could be one of the solutions to improve PDT efficiency and to bypass the phenomena of resistance and limitations to PDT. We will describe how the use of nanoparticles can be positive for activation system, biodistribution properties, tumor selectivity by selecting judicious molecular and cellular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-ALA:

5-aminolevulinic acid

AIPc:

Aluminium pthalocyanine

AuNP:

Gold nanoparticle

BDSA:

9,10-bis (4′-(4″-aminostyryl)styryl)anthracene

DOTA:

1,4,7,10-tetraazacycloDOdecane-Tetraacetic Acid

DPBF:

1,3-DiPhenilisoBenzoFuran

DTPA:

Diethylene Triamine Pentaacetic acid

EGF:

Epidermal Growth Factor

EGFR:

Epidermal Growth Factor

FDA:

Food Drug Administration

FITC:

Fluorescein IsoThioCyanate

FRET:

Förster Resonance Energy Transfer

HPPH:

2-(1-Hexyloxyethyl)-2-devinyl PyroPheophorbide-a

Hy:

Hypericin

ICG:

IndoCyanine Green

LDL:

Low Density Lipoprotein

MB:

Methylene Blue

MRI:

Magnetic Resonance Imaging

mTHPC:

m-TetraHydroxyPhenylChlorin

MTT:

bromure de 3-(4,5-diMethylThiazol-2-yl)-2,5-diphenyl Tetrazolium

NRP-1:

NeuRoPilin-1

PAA:

PolyAcrylAmide

Pc4:

Phtalocyanine

PDT:

Photo Dynamic Therapy

PEBBLE:

Photonic Explorer for Bianalysis with Biologically Localized Embedding

PEG:

PolyEthylene Glycol

PEGDMA:

Poly(Ethylene Glycol) Di MethAcrylate

PEG-PCL:

Poly (Ethylene Glycol)-block-PyreoPheophorbide a

PUNPS:

Photon Up-Converting Nanoparticles

RGD:

ArginylGlycylAspartic acid

ROS:

Reactive Oxygen Species

SLN:

Solid Lipid Nanoparticle

SLPDT:

Self-Lighting PDT

TMPyP:

5,10,15,20-Tetrakis(1-Methyl 4-Pyridino)Porphyrin tetra(p-toluensulfonate)

TPA:

Two Photon Absorption

UCNP:

UpConversion NanoPlateform

VEGF:

Vascular Endothelial Growth Factor

VTP:

Vascular Targeted Photodynamic therapy

References

  1. Gao D, Agayan R, Xu H, Philibert M, Kopelman R. Nanoparticles for two-photon photodynamic therapy in living cells. Nano Lett. 2006;6:2383–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kim S, Ohulchanskyy TH, Pudavar HE, Pandey RK, Prasad PN. Organically modified silica nanoparticles co-encapulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc. 2007;129:2669–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zhang P, Steelant W, Kumar M, Scholfield M. Versatile photosensitizers for photodynamic therapy at infrarted excitation. J Am Chem Soc. 2007;129:4526–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol. 2006;6:1159–66.

    Article  CAS  PubMed  Google Scholar 

  5. Bulin AL, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, Ledoux G, Tillement O, Perriat P, Barberi-Heyob M, Dujardin C. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J Phys Chem. 2013;117:21583–9.

    CAS  Google Scholar 

  6. Cooper DR, Kadinov K, Tyagi P, Hill CK, Bradforth SE, Nadeau JL. Photoluminescence of cerium fluoride and ceriundoped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules. Phys Chem Chem Phys. 2014;16:12441–53.

    Article  CAS  PubMed  Google Scholar 

  7. Konan YN, Gurny R, Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B. 2002;66:89–103.

    Article  CAS  PubMed  Google Scholar 

  8. Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5:497–508.

    Article  CAS  PubMed  Google Scholar 

  9. Kachatkou D, Sasnouski S, Zorin V, Zorina T, D’Hallewin MA, Guillemin F, Bezdetnaya L. Unusual photoinduced response of mTHPC liposomal formulation (Foslip). Photochem Photobiol. 2009;85:719–24.

    Article  CAS  PubMed  Google Scholar 

  10. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditchand TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J. Phase I clinical and pharmacokinetic study of PK1 [N-(2-Hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates. Clin Cancer Res. 1999;5:83–94.

    CAS  PubMed  Google Scholar 

  11. Benachour H, Sève A, Bastogne T, Frochot C, Vanderesse R, Jasniewski J, Miladi I, Billotey C, Tillement O, Lux F, Barberi-Heyob M. Multifunctional Peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI. Theranostics. 2012;2:889–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O. Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small. 2009;5:2565–75.

    Article  CAS  PubMed  Google Scholar 

  13. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  14. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9:128–47.

    Article  Google Scholar 

  15. Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab. 2010;11:129–41.

    Article  CAS  PubMed  Google Scholar 

  16. Pernot M, Frochot C, Vanderesse R, Barberi-Heyob M. Targeting strategies in photodynamic therapy for cancer treatment. In: Hamblin MR, Huang Y, editors. Handbook of photomedicine. CRC press, 2013.

    Google Scholar 

  17. Hahn S, Putt ME, Metz J, Shin DB, Rickter E, Menon C, Smith D, Glatstein E, Fraker DL, Busch TM. Photofrin uptake in the tumor and normal tissues of patients receiving intraperitoneal photodynamic therapy. Clin Cancer Res. 2006;12:5464–70.

    Article  CAS  PubMed  Google Scholar 

  18. Moriwaki SI, Misawa J, Yoshinari Y, Yamada I, Takigawa M, Tokura Y. Analysis of photosensitivity in Japanese cancer-bearing patients receiving photodynamic therapy with porfimer sodium (PhotofrinTM). Photodermatol Photoimmunol Photomed. 2001;17:241–3.

    Article  CAS  PubMed  Google Scholar 

  19. Couleaud P, Bechet D, Vanderesse R, Barberi-Heyob M, Faure AC, Roux S, Tillement O, Porhel S, Guillemin F, Frochot C. Functionalized silica-based nanoparticles for photodynamic therapy. Nanomedicine. 2011;6:995–1009.

    Article  CAS  PubMed  Google Scholar 

  20. Master A, Malamas, Solanki R, Clausen DM, Eiseman JL, Gupta AS. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol Pharm. 2013;10:1988–97.

    Google Scholar 

  21. Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, Charasson V, Loock B, Morère A, Maillard P, Garcia M, Durand JO. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423:509–15.

    Article  CAS  PubMed  Google Scholar 

  22. Gamal-Eldeen AM, El-Daly SM, Borai IH, Wafay HA, Abdel-Ghaffar AR. Photodynamic therapeutic effect ofindocyanine green entrapped in polymericnanoparticles and their anti-EGFR-conjugate in skin cancer in CD1 mice. Photodiagnosis Photodyn Ther. 2013;10:446–59.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider R, Schmitt F, Frochot C, Fort Y, Lourette N, Guillemin F, Müller JF, Barberi-Heyob M. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg Med Chem. 2005;13:2799–808.

    Article  CAS  PubMed  Google Scholar 

  24. Teng IT, Chang YJ, Wang LS, Lu HY, Wu LC, Yang CM, Chiu CC, Yang CH, Hsu SL, Ho JA. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials. 2013;34:7462–70.

    Article  CAS  PubMed  Google Scholar 

  25. Baek S, Na K. A nano complex of hydrophilic phthalocyanine and polyethylenimine for improved cellular internalization efficiency and phototoxicity. Colloids Surf B: Biointerfaces. 2013;101:493–500.

    Article  CAS  PubMed  Google Scholar 

  26. Malatesta M, Pellicciari C, Cisterna B, Costanzoa M, Galimberti V, Biggiogera M, Zancanaro C. Tracing nanoparticles and photosensitizing molecules at transmission electron microscopy by diaminobenzidine photo-oxidation. Micron. 2014;59:44–51.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou A, Wei Y, Wu B, Chen Q, Xing D. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol Pharma. 2012;9:1580–9.

    Article  CAS  Google Scholar 

  28. Sève A, Couleaud P, Lux F, Tillement O, Arnoux P, André JC, Frochot C. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching. Photochem Photobiol Sci. 2012;11:803–11.

    Article  Google Scholar 

  29. Muehlmann LA, Ma BC, Longo JPF, de Fátima Menezes M, Santos A, Azevedo RB. Aluminum–phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy. Int J Nanomedicine. 2014;9:1199–213.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lima AM, Pizzol CD, Monteiro FB, Creczynski-Pasa TB, Andrade GP, Ribeiro AO, Perussi JR. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency. J Photochem Photobiol B. 2013;125:146–54.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao B, Yin JJ, Bilski PJ, Chignell CF, Roberts JE, He YY. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol. 2009;241:163–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yoon HK, Lou X, Chen YC, Lee KYE, Yoon E, Kopelman R. Nanophotosensitizers engineered to generate a tunable mix of reactive oxygen species, for optimizing photodynamic therapy, using a microfluidic device. Chem Mater. 2014;26:1592–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Benito M, Martin V, Blanco MD, Teijon JM, Gomez C. Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer. J Pharm Sci. 2013;102:2760–9.

    Article  CAS  PubMed  Google Scholar 

  34. Madar-Balakirski N, Tempel-Brami C, Kalchenko V, Brenner O, Varon D, Scherz A, Salomon Y. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (vtp) with Tookad. Plos One. 2010;5:e10282.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ran S, Thorpe PE. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys. 2002;54:1479–84.

    Article  CAS  PubMed  Google Scholar 

  36. Harrell J, Kopelman R. Biocompatible probes measure intracellular activity. Biophotonics Int. 2001;7:22–4.

    Google Scholar 

  37. Kopelman R, Koo YEL, Philbert M, Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM, Rehemtulla A, Ross BD. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mat. 2005;293:404–10.

    Article  CAS  Google Scholar 

  38. Koo YEL, Fan W, Hah H, Xu H, Orringer D, Ross B, Rehemtulla A, Philbert MA, Kopelman R. Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy. Appl Opt. 2007;46:1924–30.

    Article  CAS  PubMed  Google Scholar 

  39. Ross B, Rehemtulla A, Koo YEL, Reddy R, Kim G, Behrend C, Buck S, Schneider RJ, Philbert MA, Weissleder R, Kopelman R. Nanobiophotonics and biomedical applications (photonic and magnetic nanopexplorers for Biomedical use: from subcellular imaging to cancer diagnostics and Therapy, vol. 5331, Cartwright AN, Éd., Proceedings of SPIE, 2004.

    Google Scholar 

  40. Xu H, Aylott J, Kopelman R, Miller T, Philbert M. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem. 2001;73:4124–33.

    Article  CAS  PubMed  Google Scholar 

  41. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YEL, Croft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res. 2006;12:6677–86.

    Article  CAS  PubMed  Google Scholar 

  42. Moffat BA, Chenevert TL, Meyer CR, Mckeever PE, Hall DE, Hoff BA, Johnson TD, Rehemtulla A, Ross BD. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia. 2006;8:259–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Qin M, Hah HJ, Kim G, Nie G, Lee YEK, Kopelman R. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci. 2011;10:832–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hah HJ, Kim G, Lee YEK, Orringer DA, Sagher O, Philbert MA, Kopelman R. Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol Biosci. 2011;10:90–9.

    Article  Google Scholar 

  45. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26:612–21.

    Article  CAS  PubMed  Google Scholar 

  46. Bechet D, Tirand L, Faivre B, Plénat F, Bonnet C, Bastogne T, Frochot C, Guillemin F, Barberi-Heyob M. Neuropilin-1 targeting photosensitization-induced early stages of thrombosis via tissue factor release. Pharm Res. 2010;27:468–79.

    Article  CAS  PubMed  Google Scholar 

  47. Thomas N, Bechet D, Becuwe P, Tirand L, Vanderesse R, Frochot C, Guillemin F, Barberi-Heyob M. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. J Photochem Photobiol B. 2009;96:101–8.

    Article  CAS  PubMed  Google Scholar 

  48. Tirand L, Frochot C, Vanderesse R, Thomas N, Trinquet E, Pinel S, Viriot ML, Guillemin F, Barberi-Heyob M. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Control Release. 2006;111:153–64.

    Article  CAS  PubMed  Google Scholar 

  49. Benachour H, Bastogne T, Toussaint M, Chemli Y, Sève A, Frochot C, Lux F, Tillement O, Vanderesse R, Barberi-Heyob M. Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach. Plos One. 2012;7: e48617.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fonds of the French Ligue Nationale contre le cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Barberi-Heyob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toussaint, M., Barberi-Heyob, M., Pinel, S., Frochot, C. (2015). How Nanoparticles Can Solve Resistance and Limitation in PDT Efficiency. In: Rapozzi, V., Jori, G. (eds) Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12730-9_9

Download citation

Publish with us

Policies and ethics