Skip to main content

Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event

  • Original Paper
  • Chapter
  • First Online:
Meteorological Tsunamis: The U.S. East Coast and Other Coastal Regions
  • 593 Accesses

Abstract

To support development of a meteotsunami forecasting capability for the USA, the National Oceanic and Atmospheric Administration funded a project in 2011 focused on meteotsunami forecasting for the US east coast. Meteotsunami forecasting shares many similarities with traditional tsunami forecasting, though the characterization and integration of the source with numerical forecast models is much different. Given meteotsunami source characterization through atmospheric observations and models, it is conceivable that meteotsunami alerts could be issued and their impact forecasted using existing tsunami forecast models with high-resolution coastal definition. To test this, the 2008 Boothbay, Maine, meteotsunami is simulated using an atmospheric source consisting of a moving pressure disturbance coupled with a tsunami forecast model. Sensitivities of the modeled impact to the source characteristics, such as speed, wavelength, and direction, are also tested. Results show that the observed impact can be re-created through numerical modeling when the pressure disturbance period is roughly matched with the harbor resonance and observed meteotsunami period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson EJ, Schwab DJ, Lombardy KA, LaPlante RE (2012) Detection and Modeling of a meteotsunami in Lake Erie during a high wind event on May 27, 2012. AGU Fall Meeting 2012 NH23B-1621

    Google Scholar 

  • Asano T, Yamashiro T, Nishimura N (2012) Field observations of meteotsunami in Kami-koshiki Island, Japan. AGU Fall Meeting 2012 NH23B-1622

    Google Scholar 

  • Candella RN (2009) Meteorologically induced strong seiches observed at Arraial do Cabo, RJ Brazil. Phys Chem Earth 34:989–997

    Article  Google Scholar 

  • Churchill DD, Houston SH, Bond NA (1995) The Daytona Beach Wave of 3-4 July 1992: a shallow-water gravity wave forced by a propagating squall line. Bull Am Meteorol Soc 76:21–32

    Article  Google Scholar 

  • Dragani WC, D’Onofrio EE, Grismeyer W, Fiore MME, Campos MI (2009) Atmospherically-induced water oscillations detected in the port of Quequen, Buenos Aires, Argentina. Phys Chem Earth 34:998–1008

    Article  Google Scholar 

  • Goring GG (2009) Meteotsunami resulting from the propagation of synoptic-scale weather systems. Phys Chem Earth 34:1009–1015

    Article  Google Scholar 

  • Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  • Jansa A, Monserrat S, Gomis D (2007) The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Adv Geosci 12:1–4

    Article  Google Scholar 

  • Knight B, Kowalik Z, Whitmore P (2012) ATFM (Alaska Tsunami Forecast Model). In: National Tsunami Hazard Mitigation Program Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. US Dept. Of Commerce/NOAA/NTHMP; NOAA Special Report 89-104, Boulder

    Google Scholar 

  • Kowalik Z, Murty T (1993) Numerical modeling of ocean dynamics. World Scientific Press, Singapore, 481 pp

    Google Scholar 

  • Lipa B, Parikh H, Barrick D, Roarty H, Glenn S (2013) High frequency radar observations of the June 2013 US East Coast meteotsunami. Nat Hazards, doi 10.1007/s11069-013-0992-4

  • Monserrat S, Vilibić I, Rabinovich AB (2006) Meteotsunamis: atmospherically induced destructive waves in the tsunami frequency band. Nat Hazards Earth Syst Sci 6:1035–1051

    Article  Google Scholar 

  • Nichols B, Hirt C, Hotchkiss RS (1980) SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries. Los Alamos National Labs report LA-8355

    Google Scholar 

  • Pasquet S, Vilibić I (2013) Shelf edge reflection of atmospherically generated long ocean waves along the central U.S. East Coast. Cont Shelf Res 66:1–8

    Article  Google Scholar 

  • Pasquet S, Vilibić I, Å epić J (2013) A survey of strong high-frequency sea level oscillations along the US East Coast between 2006 and 2011. Nat Hazards Earth Syst Sci 13. doi:10.5194/nhess-13-473-2013

    Article  Google Scholar 

  • Renault LG, Vizoso A, Jansa A, Wilkin J, Tintore J (2011) Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophys Res Lett 38:L10601. doi:10.1029/2011GL047361

    Article  Google Scholar 

  • Å epić J, Vilibić I (2011) The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Nat Hazards Earth Syst Sci 11:83–91. doi:10.5194nhess-11-83-2011

    Article  Google Scholar 

  • Å epić J, Vilibić I, Mahović NS (2012) Northern Adriatic meteorological tsunamis: observations, link to the atmosphere, and predictability. J Geophys Res 117:C02002. doi:10.1029/2011JC007608

    Article  Google Scholar 

  • Tanaka K (2012) On meteotsunamis around Tsushima Strait generated by the Baiu front. Nat Hazards 63:805–822. doi:10.1007/s11069-012-0186-5

    Article  Google Scholar 

  • Tatehata H (1997) The new tsunami warning system of the Japan Meteorological Agency. In: Hebenstreit G (ed) Perspectives on tsunami hazard reduction. Springer, New York, pp 175–188

    Chapter  Google Scholar 

  • Thomson RE, Rabinovich AB, Fine IV, Sinnott DC, McCarthy A, Sutherland NAS, Neil LK (2009) Meteological tsunamis on the coasts of British Columbia and Washington. Phys Chem Earth 34:971–988

    Article  Google Scholar 

  • Titov VV, Gonzalez FI, Bernard EN, Eble MC, Mofjeld HO, Newman JC, Venturato AJ (2005) Real-time tsunami forecasting: challenges and solutions. Nat Hazards 35:41–58

    Article  Google Scholar 

  • Van Leer B (1977) Towards the ultimate conservative difference scheme-IV. J Comput Phys 23:276–299

    Article  Google Scholar 

  • Vilibić I, Å epić J (2009) Destructive meteotsunamis along the eastern Adriatic coast: overview. Phys Chem Earth 34:904–917

    Article  Google Scholar 

  • Vilibić I, Horvath K, Mahović NS, Monserrat S, Marcos M, Amores A, Fine I (2013) Atmospheric processes responsible for the generation of the 2008 Boothbay meteotsunami. Nat Hazards. doi 10.1007/s11069-013-0811-y

  • Wang D, Becker NC, Walsh D, Fryer GJ, Weinstein SA, McCreery CS, Sardina V, Hsu V, Hirshorn BF, Hayes GP, Duputel Z, Rivera L, Kanamori H, Koyanagi KK, Shiro B (2012) Real-time forecasting of the April 11, 2012 Sumatra tsunami. Geophys Res Lett 39:6 pp. doi: 10.1029/2012GL053081

    Google Scholar 

  • Whitmore P (2003) Tsunami amplitude prediction during events: a test based on previous tsunamis. Sci Tsunami Hazards 21:135–143

    Google Scholar 

  • Whitmore P (2009) Tsunami warning systems. Chapter 13. In: Bernard EN, Robinson AR (eds) The sea—tsunamis. Harvard University Press, Cambridge MA, pp 401–442

    Google Scholar 

  • Wilson RI, Admire AR, Borrero JC, Dengler LA, Legg MR, Lynett P, Miller KM, Ritchie A, Sterling K, McCrink TP, Whitmore PM (2012) Observations and impacts from the 2010 Chilean and 2011 Japanese tsunami in California (USA). Pure Appl Geophys. doi:10.1007/s00024-012-0527-z

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the international TMEWS team for their diligent efforts in researching the source characteristics of east coast and other meteotsunamis; the NWS Tsunami Program, especially former Program Manager Jen Rhoades, for its support for the TMEWS project; Frank Kelly and Carven Scott of the NWS Alaska Region for early support for the investigation; John Jensenius, Bart Hagemeyer, and Scott Spratt of the NWS Eastern and Southern Region for supplying observational data where possible; and Fred Stephenson, Guy Urban, David Nyland, and one anonymous reviewer for constructive reviews of the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Whitmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 US Government

About this chapter

Cite this chapter

Whitmore, P., Knight, B. (2014). Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event. In: Vilibić, I., Monserrat, S., Rabinovich, A.B. (eds) Meteorological Tsunamis: The U.S. East Coast and Other Coastal Regions. Springer, Cham. https://doi.org/10.1007/978-3-319-12712-5_2

Download citation

Publish with us

Policies and ethics