Meteorological tsunamis on the US East Coast and in other regions of the World Ocean

  • Ivica VilibićEmail author
  • Sebastian Monserrat
  • Alexander B. Rabinovich


Balearic Island Atmospheric Gravity Wave Lake Michigan Basin Meteorological Tsunami Proudman Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We, the Guest Editors, would like to thank Paul Whitmore, who was spiritus movens for this special issue and for creation of NOAA meteotsunami funding opportunity, which leaded to the realization of the TMEWS project. He also reviewed the Editorial and his comments improved the quality of the text. The TMEWS (Towards a meteotsunami warning system along the US coastline, project was funded by NOAA, Award No. NA11NWS4670005. Tad Murty, the Editor-in-Chief of Natural Hazards, and Petra van Steenbergen, Senior Publishing Editor, Earth Sciences and Geography, Springer, are acknowledged for arranging and encouraging us to organize this topical issue on meteotsunami. We also thank Bhavani Sridhar at Journals Editorial Office of Springer for her editorial assistance. We especially would like to acknowledge Fred Stephenson who reviewed, edited and polished many papers in this issue. Finally, we would like to thank all the authors and reviewers who contributed to this topical issue. Work on this issue by Ivica Vilibić is supported by Ministry of Science, Education and Sports of the Republic of Croatia and by Alexander B. Rabinovich is partly supported by RFBR Grants 12-05-00733-a and 12-05-00757-a.


  1. Akamatsu H (1982) On seiches in Nagasaki Bay. Pap Meteorol Geophys Jpn 33(2):95–115CrossRefGoogle Scholar
  2. Belušić D, Grisogono B, Klaić ZB (2007) Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. J Geophys Res 112:D17111. doi: 10.1029/2006JD008204 CrossRefGoogle Scholar
  3. Candela J, Mazzola S, Sammari C, Limeburner R, Lozano CJ, Patti B, Bonnano A (1999) The “Mad Sea” phenomenon in the Strait of Sicily. J Phys Oceanogr 29:2210–2231CrossRefGoogle Scholar
  4. Churchill DD, Houston SH, Bond NA (1995) The Daytona Beach wave of 3–4 July 1992: a shallow water gravity wave forced by a propagating squall line. Bull Am Meteorol Soc 76:21–32CrossRefGoogle Scholar
  5. Colucci P, Michelato A (1976) An approach to study of the ‘Marubbio’ phenomenon. Boll Geofis Theor Appl 13(69):3–10Google Scholar
  6. de Jong MPC, Battjes JA (2004) Low-frequency sea waves generated by atmospheric convection cells. J Geophys Res 109:C01011. doi: 10.1029/2003JC001931 CrossRefGoogle Scholar
  7. de Jong MPC, Holthuijsen LH, Battjes JA (2003) Generation of seiches by cold fronts over the southern North Sea. J Geophys Res 108:3117. doi: 10.1029/2002JC001422 CrossRefGoogle Scholar
  8. Defant A (1961) Physical oceanography, vol 2. Pergamon Press, Oxford, p 729Google Scholar
  9. Donn WL, Balachandran NK (1969) Coupling between a moving air-pressure disturbance and the sea surface. Tellus 21:701–706CrossRefGoogle Scholar
  10. Donn WL, McGuinness WT (1960) Air-coupled long waves in the ocean. J Meteorol 17:515–521CrossRefGoogle Scholar
  11. Ewing M, Press F, Donn WL (1954) An explanation of the Lake Michigan wave of 26 June 1954. Science 120:684–686CrossRefGoogle Scholar
  12. Gomis D, Monserrat S, Tintoré J (1993) Pressure-forced seiches of large amplitude in inlets of the Balearic Islands. J Geophys Res 98:14437–14445CrossRefGoogle Scholar
  13. González JI, Farreras SF, Ochoa J (2001) Seismic and meteorological tsunami contributions in the Manzanillo and Cabo San Lucas seiches of September 14, 1995. Mar Geod 24:219–227CrossRefGoogle Scholar
  14. Goring DG (2005) Rissaga (long-wave events) on New Zealand’s eastern seaboard: a hazard for navigation. In: Proceedings 17th Australasian coastal ocean engineering conference, Adelaide, Australia, 20–23 Sept 2005, pp 137–141Google Scholar
  15. Greenspan HP (1956) The generation of edge waves by moving pressure disturbance. J Fluid Mech 1:575–592CrossRefGoogle Scholar
  16. Hibiya T, Kajiura K (1982) Origin of ‘‘Abiki’’ phenomenon (kind of seiches) in Nagasaki Bay. J Oceanogr Soc Jpn 38:172–182CrossRefGoogle Scholar
  17. Hodžić M (1979/1980) Occurrences of exceptional sea-level oscillations in the Vela Luka Bay (in Croatian). Priroda 68: 52–53Google Scholar
  18. Jansà A, Monserrat S, Gomis D (2007) The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Adv Geosci 12:1–4CrossRefGoogle Scholar
  19. Liu PLF, Monserrat S, Marcos M, Rabinovich AB (2003) Coupling between two inlets: observation and modeling. J Geophys Res 108(C3):3069. doi: 10.1029/2002JC001478 CrossRefGoogle Scholar
  20. Marcos M, Monserrat S, Medina R, Orfila A, Olabarrieta M (2009) External forcing of meteorological tsunamis at the coast of the Balearic Islands. Phys Chem Earth 34:938–947CrossRefGoogle Scholar
  21. Mecking JV, Fogarty CT, Greatbatch RJ, Sheng J, Mercer D (2009) Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000). J Geophys Res 114:C10005. doi: 10.1029/2009JC005290 CrossRefGoogle Scholar
  22. Mercer D, Sheng J, Greatbatch RJ, Bobanović J (2002) Barotropic waves generated by storms moving rapidly over shallow water. J Geophys Res 107(C10):3152. doi: 10.1029/2001JC001140 CrossRefGoogle Scholar
  23. Monserrat S, Thorpe AJ (1996) Use of ducting theory in an observed case of gravity waves. J Atmos Sci 53:1724–1736CrossRefGoogle Scholar
  24. Monserrat S, Ibberson A, Thorpe AJ (1991) Atmospheric gravity waves and the “rissaga” phenomenon. Q J Roy Meteorol Soc 117:553–570Google Scholar
  25. Monserrat S, Rabinovich AB, Casas B (1998) On the reconstruction of the transfer function for atmospherically generated seiches. Geophys Res Lett 25(12):2197–2200CrossRefGoogle Scholar
  26. Monserrat S, Vilibić I, Rabinovich AB (2006) Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat Hazards Earth Syst Sci 6:1035–1051CrossRefGoogle Scholar
  27. Nomitsu T (1935) A theory of tsunamis and seiches produced by wind and barometric gradient. Mem Coll Sci Imp Univ Kyoto A 18(4):201–214Google Scholar
  28. Orlić M (1980) About a possible occurrence of the Proudman resonance in the Adriatic. Thalass Jugosl 16:79–88Google Scholar
  29. Orlić M, Belušić D, Janeković I, Pasarić M (2010) Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. J Geophys Res 115:C06011. doi: 10.1029/2009JC005777 CrossRefGoogle Scholar
  30. Pasquet S, Vilibić I (2013) Shelf edge reflection of atmospherically generated long ocean waves along the central U.S East Coast. Cont Shelf Res 66:1–8CrossRefGoogle Scholar
  31. Pasquet S, Vilibić I, Šepić J (2013) A survey of strong high-frequency sea level oscillations along the U.S. East Coast between 2006 and 2011. Nat Hazards Earth Syst Sci 13:473–482CrossRefGoogle Scholar
  32. Paxton CH, Sobien DA (1998) Resonant interaction between an atmospheric gravity wave and shallow water wave along Florida’s west coast. Bull Am Meteorol Soc 79:2727–2732CrossRefGoogle Scholar
  33. Proudman J (1929) The effect on the sea of changes in atmospheric pressure. Mon Not R Astr Soc Geophys Supp 2:197–209CrossRefGoogle Scholar
  34. Rabinovich AB (2009) Seiches and harbor oscillations. In: Kim YC (ed) Handbook of coastal and ocean engineering. World Scientific Publishing, Singapore, pp 193–236CrossRefGoogle Scholar
  35. Rabinovich AB, Monserrat S (1996) Meteorological tsunamis near the Balearic and Kuril Islands: descriptive and statistical analysis. Nat Hazards 13(1):55–90CrossRefGoogle Scholar
  36. Rabinovich AB, Monserrat S (1998) Generation of meteorological tsunamis (large amplitude seiches) near the Balearic and Kuril Islands. Nat Hazards 18(1):27–55CrossRefGoogle Scholar
  37. Rabinovich AB, Vilibić I, Tinti S (2009) Meteorological tsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Phys Chem Earth 34(17–18):891–893CrossRefGoogle Scholar
  38. Renault L, Vizoso G, Jansà A, Wilkin J, Tintoré J (2011) Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophys Res Lett 38:L10601CrossRefGoogle Scholar
  39. Sallenger AH Jr, List JH, Gelfenbaum G, Stumpf RP, Hansen M (1995) Large wave at Daytona Beach, Florida, explained as a squall-line surge. J Coast Res 11:1383–1388Google Scholar
  40. Šepić J, Vilibić I (2011) The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Nat Hazards Earth Syst Sci 11:83–91CrossRefGoogle Scholar
  41. Šepić J, Vilibić I, Belušić D (2009) The source of the 2007 Ist meteotsunami (Adriatic Sea). J Geophys Res 114:C03016. doi: 10.1029/2008JC005092 CrossRefGoogle Scholar
  42. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  43. Tanaka K (2010) Atmospheric pressure-wave bands around a cold front resulted in a meteo-tsunami in the East China Sea in February 2009. Nat Hazards Earth Syst Sci 10:2599–2610CrossRefGoogle Scholar
  44. Thomson RE, Rabinovich AB, Krassovski MV (2007) Double jeopardy: concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophys Res Lett 34:L15607. doi: 10.1029/2007GL030685 CrossRefGoogle Scholar
  45. Tintoré J, Gomis D, Alonso S, Wang DP (1988) A theoretical study of large sea level oscillations in theWestern Mediterranean. J Geophys Res 93:10797–10803CrossRefGoogle Scholar
  46. Vennell R (2007) Long barotropic waves generated by a storm crossing topography. J Phys Oceanogr 37:2809–2823CrossRefGoogle Scholar
  47. Vilibić I (2005) Numerical study of the Middle Adriatic coastal waters sensitivity to the various air pressure travelling disturbances. Ann Geophys 23:3569–3578CrossRefGoogle Scholar
  48. Vilibić I (2008) Numerical simulations of the Proudman resonance. Cont Shelf Res 28:574–581CrossRefGoogle Scholar
  49. Vilibić I, Domijan N, Orlić M, Leder N, Pasarić M (2004) Resonant coupling of a traveling air-pressure disturbance with the east Adriatic coastal waters. J Geophys Res 109:C10001. doi: 10.1029/2004JC002279 CrossRefGoogle Scholar
  50. Vilibić I, Horvath K, Strelec Mahović N, Monserrat S, Marcos M, Amores A, Fine I (2014) Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami. Nat Hazards (this issue). doi: 10.1007/s11069-013-0811-y CrossRefGoogle Scholar
  51. Vučetić T, Vilibić I, Tinti S, Maramai A (2009) The Great Adriatic flood of 21 June 1978 revisited: an overview of the reports. Phys Chem Earth 34:894–903CrossRefGoogle Scholar
  52. Wang X, Li K, Yu Z, Wu J (1987) Statistical characteristics of seiches in Longkou Harbour. J Phys Oceanogr 17:1963–1966Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ivica Vilibić
    • 1
    Email author
  • Sebastian Monserrat
    • 2
    • 3
  • Alexander B. Rabinovich
    • 4
    • 5
  1. 1.Institute of Oceanography and FisheriesSplitCroatia
  2. 2.Institute for Advanced Studies IMEDEA (CSIC-UIB)EsporlesSpain
  3. 3.Department of PhysicsUniversity of the Balearic IslandsPalma de MallorcaSpain
  4. 4.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  5. 5.Fisheries and Oceans Canada, Institute of Ocean SciencesSidneyCanada

Personalised recommendations