Advertisement

AUTOSUPERCAP: Development of High Energy and High Power Density Supercapacitor Cells

  • Constantina LekakouEmail author
  • Aldo Sorniotti
  • Chunhong Lei
  • Foivos Markoulidis
  • Peter C. Wilson
  • Alberto Santucci
  • Steve Tennison
  • Negar Amini
  • Christos Trapalis
  • Gianfranco Carotenuto
  • Sofie Khalil
  • Brunetto Martorana
  • Irene Cannavaro
  • Michele Gosso
  • John Perry
  • Craig Hoy
  • Marcel Weil
  • Hanna Dura
  • Fabio Viotto
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

The study focuses on the materials and small supercapacitor cells manufactured in the first period of AUTOSUPERCAP project. The supercapacitor cells presented in this paper are of the type of symmetrical, electrochemical double layer capacitor (EDLC) cells with organic electrolyte TEABF4 dissolved in propylene carbonate (PC) or acetonitrile (AN). Different active electrode materials have been investigated, including novel activated carbon, graphene and carbon nanotubes produced in this project, as well as combinations of these materials. Supercapacitor cells of 2–4 cm2 area were fabricated and tested in impedance spectroscopy, cyclic voltammetry and charge-discharge tests. Ragone plots of energy density against power density were constructed from the charge-discharge test data at different current densities. Furthermore, the results of a cost analysis are presented for the main types of supercapacitors investigated.

Keywords

Supercapacitors Activated carbon Carbon nanotubes Graphene Electric vehicle 

References

  1. 1.
    Lei C, Wilson P, Lekakou C (2011) Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. J Power Sources 196:7823–7827CrossRefGoogle Scholar
  2. 2.
    Vermisoglou E, Todorova N, Pilatos G, Romanos G, Likodimos V, Boukos N, Lei C, Markoulidis F, Lekakou C, Trapalis C (2012) Few layer graphenes decorated with ag nanoparticles for supercapacitor applications. In: Proceedings of ECCM15, Venice, June 2012Google Scholar
  3. 3.
    Vermisoglou EC, Petridis D, Pilatos G, Romanos G, Likodimos V, Lekakou C, Trapalis C (2012) Iron carbide-graphene hybrid nanostructures. GrapHEL, Mykonos, pp 27–30Google Scholar
  4. 4.
    Todorova N, Vermisoglou E, Giannakopoulou T, Giannouri M, Lei C, Markoulidis F, Lekakou C, Trapalis C (2012) Simultaneous photoreduction and silver decoration of graphitic materials. GrapHEL, Mykonos, 27–30 Sept 2012Google Scholar
  5. 5.
    Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C (2013) Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J Mater Chem A. doi: 10.1039/c3ta01638b Google Scholar
  6. 6.
    Weil M, Dura H, Shimon B, Baumann M, Zimmermann B, Ziemann S, Lei C, Markoulidis F, Lekakou T, Decker M (2012) Ecological assessment of nano-enabled supercapacitors for automotive applications. IOP Conf Ser: Mater Sci Eng 40:012013-1-6Google Scholar
  7. 7.
    Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312CrossRefGoogle Scholar
  8. 8.
    Schoenung SM (2011) Energy storage systems cost update. Sandia National Laboratories, AlbuquerqueCrossRefGoogle Scholar
  9. 9.
    Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53–57Google Scholar
  10. 10.
    Felberbauer K-P, Kloess M, Jungmeier G, Haas R, Könighofer K, Prüggler W, Pucker J, Rezania R, Beermann M, Wenzel A (2012) Energiespeicher der Zukunft, Energiespeicher für erneurbare Energie als Schlüssel-Technologie für zukünfitge Energiesysteme, Joanneum Research, Graz, Austria, Endbericht, 2012Google Scholar
  11. 11.
    Inage S (2009) Prospects for large-scale energy storage in decarbonised power grids. In: International Energy Agency, IEA, 2009Google Scholar
  12. 12.
    Dura H, Weil M (2013) Cost analysis of supercapacitor cell production. Proceedings of 2013 International Conference on Clean Electrical Power (ICCEP), Alghero, IEEE, pp 516−523Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Constantina Lekakou
    • 1
    Email author
  • Aldo Sorniotti
    • 1
  • Chunhong Lei
    • 1
  • Foivos Markoulidis
    • 1
  • Peter C. Wilson
    • 1
  • Alberto Santucci
    • 1
  • Steve Tennison
    • 2
  • Negar Amini
    • 2
  • Christos Trapalis
    • 3
  • Gianfranco Carotenuto
    • 4
  • Sofie Khalil
    • 5
  • Brunetto Martorana
    • 6
  • Irene Cannavaro
    • 6
  • Michele Gosso
    • 6
  • John Perry
    • 7
  • Craig Hoy
    • 7
  • Marcel Weil
    • 8
  • Hanna Dura
    • 8
  • Fabio Viotto
    • 9
  1. 1.Department of Mechanical Engineering SciencesUniversity of SurreyGuildfordUK
  2. 2.MAST Carbon International LtdBasingstokeUK
  3. 3.National Centre for Scientific Research “Demokritos”AthensGreece
  4. 4.Institute of Composite and Biomedical MaterialsNational Research CouncilNaplesItaly
  5. 5.Bayer Technology Services GmbHTechnology Development, CHEMPARKLeverkusenGermany
  6. 6.New Materials Scouting & Nanomaterials DepartmentCentro Ricerche Fiat S.C.p.AOrbassanoItaly
  7. 7.AGM Batteries LtdCaithnessUK
  8. 8.Institute for Technology Assessment and Systems AnalysisKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  9. 9.Oerlikon GrazianoRivoliItaly

Personalised recommendations