HELIOS—High Energy Lithium Ion Storage Solutions: Comparative Assessment of 4 Chemistries of Cathode for EV and PHEV Applications

  • Frédérique Del CorsoEmail author
  • Horst Mettlach
  • Mathieu Morcrette
  • Uwe Koehler
  • Cedric Gousset
  • Christian Sarrazin
  • Ghislain Binotto
  • Denis Porcellato
  • Matthias Vest
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


HELIOS is a 4 year project to carry out a comparative assessment of 4 types of lithium-ion battery technology (NCA, LFP, NMC and LMO-NCA or LMO-blend/Graphite). The assessments concern traction batteries for the automotive sector (Electric Vehicles and Plug-in HEV). The evaluations are carried out on ‘real’ size high energy cells with a capacity of approximately 40 Ah, produced industrially. In total, up to 220 cells have been employed across the various cell types and test activities (safety tests on new and pre-aged cells), cycling and calendar tests (12–15 months). The comparisons have been achieved from laboratory testing and other analysis of full sized battery cells in order to determine comparative assessment of Performance, life, cost, recycling and safety characteristics. This paper makes a review of the main results of Helios project.


High energy cells EV and PHEV Li-ion cells 



The authors thank the European Union for funding the project HELIOS, which brought the opportunity to carry out this collaborative work.

Also, acknowledgements are directed to all the partners involved into this project:

OEM’s (RENAULT, Adam Opel AG, Ford, Volvo, CRF, PSA), other industries (EDF, SAFT, JCHaR, Umicore), Research Institutes (AIT, CEA, CNRS-LRCS, ENEA, ZSW, INERIS), Universities (RWTH ISEA and IME, University of Uppsala).


  1. 1.
    Helios Deliverable 3.1, High energy cell target specification.
  2. 2.
    Helios Deliverable 3.2, Initial performance characterisation, cycling and calendar ageing test proceduresGoogle Scholar
  3. 3.
    Helios Deliverable 3.3, Report on recommended safety tests for high energy battery cellsGoogle Scholar
  4. 4.
    Kubiak P, Wolfahrt-Mehrens M, Edström K, Morcrette M, Review on ageing mechanisms of different Li-ion batteries for automotive applications. JPS power D 12:03691 Google Scholar
  5. 5.
    Broussely M (SAFT), Pistoia G (2007) Industrial applications of batteries, from cars to aerospace and energy storage. Elsevier, Amsterdam, pp 247–255Google Scholar
  6. 6.
    Kabitz S, Gerschler JB, Ecker M, Yurdagel Y, Emmermacher B, André D, Mitsch T, Sauer DU (2013) Cycle and calendar life study of a graphite/NMC-based Li-ion high energy system Part A: Full cell characterization. J Power Sources 239:572–583Google Scholar
  7. 7.
    Mulder G, Omar N, Pauwels S, Meeus M, Leemans F, Verbruffe B, De Nijs W, Van den Bossche P, Six D, Van Mierlo J (2013) Comparison of commercial battery cells in relation to material properties. Electrochim Acta 87:473–488CrossRefGoogle Scholar
  8. 8.
    Helios deliverable 6.1, Review on thermal runaway reaction mechanisms events in batteriesGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Frédérique Del Corso
    • 1
    Email author
  • Horst Mettlach
    • 2
  • Mathieu Morcrette
    • 3
  • Uwe Koehler
    • 4
  • Cedric Gousset
    • 5
  • Christian Sarrazin
    • 6
  • Ghislain Binotto
    • 7
  • Denis Porcellato
    • 8
  • Matthias Vest
    • 9
  1. 1.RENAULT SAGuyancourt CedexFrance
  2. 2.GM-OPEL, Adam Opel AGRusselsheimGermany
  3. 3.CNRS-LRCSUniversité de Picardie Jules VerneAmiens CedexFrance
  4. 4.Johnson ControlsHannoverGermany
  5. 5.SAFTBordeaux CedexFrance
  6. 6.EDFMoret sur loingFrance
  7. 7.INERISVerneuil en HalatteFrance
  8. 8.PSA Peugeot CitroënCarrières-sous-PoissyFrance
  9. 9.IMERWTH Aachen University of TechnologyAachenGermany

Personalised recommendations