Skip to main content

A Simple Method for Testing Global and Individual Hypotheses Involving a Limited Number of Possibly Correlated Outcomes

  • Conference paper
  • First Online:
Applied Statistics in Biomedicine and Clinical Trials Design

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 1912 Accesses

Abstract

Tests for the presence of a global treatment effect expressed by possibly correlated “primary” outcome variables taken together frequently use Bonferroni-type adjustments. These procedures accommodate an arbitrary number of comparisons, but can be conservative if the outcome variables are highly correlated. This conservatism can be ameliorated by a simple rule requiring essentially no calculation (and therefore convenient to apply when exact calculation is impractical) that is relatively robust to the correlation structure of the responses when the number of comparisons is not large (16 or less for 5 % level tests). The recommended global testing rule is: For a type 1 error rate of α and up to K(α) “primary” response variables, reject the global null hypothesis if (a) the smallest marginal p value is slightly less than α 1  = α/K, (b) the second smallest marginal p value is ≤ 2α 1, or (c) the third smallest marginal p value is ≤ α. Analytic expressions that do not assume independence or any particular distribution for the responses are provided for the probability of rejecting the global null hypothesis. The type 1 error rates and power generally are preserved regardless of the correlation structure. Individual comparisons can be tested if the global null hypothesis is rejected, with reasonable preservation of comparison-wise type 1 error rates and of the false discovery rates (FDRs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57:289–300

    MATH  MathSciNet  Google Scholar 

  • Benjamini Y, Stark PB (1996) Nonequivariant simultaneous confidence intervals less likely to contain zero. J Am Stat Assoc 91:329–337

    Article  MATH  MathSciNet  Google Scholar 

  • Benjamini Y, Liu W (1999) A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. J Stat Plan Inference 82:163–170

    Article  MATH  MathSciNet  Google Scholar 

  • Berger RL (1982) Multiparameter hypothesis testing and acceptance sampling. Technometrics 24:295–300

    Article  MATH  MathSciNet  Google Scholar 

  • Bonferroni CE (1936) Teoria statistica della classi e calcolo delle probabilità. Pubbl del R Ist Super di Sci Econ e Commer di Firenze 8:3–62

    Google Scholar 

  • Capizzi T, Zhang J (1996) Testing the hypothesis that matters for multiple primary endpoints. Drug Inf J 30:949–956

    Google Scholar 

  • Cook RJ, Farewell VT (1996) Multiplicity considerations in the design and analysis of clinical trials. J R Stat Soc Series A 159:93–110

    Article  Google Scholar 

  • Farcomeni A (2008) A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion. Stat Methods Med Res 17:347–388

    Article  MATH  MathSciNet  Google Scholar 

  • Farcomeni A, Pacillo S (2011) A conservative estimator for the proportion of false nulls based on Dvoretzky, Kiefer and Wolfowitz inequality. Stat Probab Lett 81:1867–1870

    Article  MATH  MathSciNet  Google Scholar 

  • Farcomeni A, Finos L (2013) FDR control with pseudo-gatekeeping based on a possibly data driven order of the hypotheses. Biometrics 69:606–613

    Article  MATH  MathSciNet  Google Scholar 

  • Feller W (1957) An Introduction to Probability Theory and Its Applications. Wiley, New York.

    Google Scholar 

  • Finner H, Roters M (2002) Multiple hypotheses testing and expected number of type I errors. Ann Stat 30:220–238

    Article  MATH  MathSciNet  Google Scholar 

  • Finner H, Gontscharuk V (2009) Controlling the familywise error rate with plug-in estimator for the proportion of true null hypotheses. J R Stat Soc Series B Stat Methodol 71:1031–1048

    Article  MathSciNet  Google Scholar 

  • Finos L, Farcomeni A (2011) k-FWER control without p-value adjustment, with Application to Detection of Genetic Determinants of Multiple Sclerosis in Italian Twins. Biometrics 67:174–181

    Article  MATH  MathSciNet  Google Scholar 

  • Gabriel KR (1969) Simultaneous test procedures—some theory of multiple comparisons. Ann Of Math Stat 40:224–250

    Article  MATH  MathSciNet  Google Scholar 

  • Grechanovsky E, Pinsker I (1999) A general approach to stepup multiple test procedures for free-combinations families. J Stat Plan Inference 82:35–54

    Article  MATH  MathSciNet  Google Scholar 

  • Hochberg Y (1988) A sharper bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    Article  MATH  MathSciNet  Google Scholar 

  • Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York

    Book  MATH  Google Scholar 

  • Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818

    Article  Google Scholar 

  • Hochberg Y, Rom DM (1995) Extensions of multiple testing procedures based on Simes’s test. J Stat Plan Inference 48:141–152

    Article  MATH  MathSciNet  Google Scholar 

  • Holland B, Copenhaver MD (1987) An improved sequentially rejective bonferroni test procedure (corr: v43 p 737). Biometrics 43:417–423

    Article  MATH  MathSciNet  Google Scholar 

  • Holland B, Copenhaver MD (1988) Improved bonferroni-type multiple testing procedures. Psychol Bull 104:145–149

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    MATH  MathSciNet  Google Scholar 

  • Hommel G (1988) A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75:383–386

    Article  MATH  Google Scholar 

  • Hommel G, Bretz F, Maurer W (2011) Multiple hypotheses testing based on ordered p values—a historical survey with applications to medical research. J Biopharm Stat 21:595–609

    Article  MathSciNet  Google Scholar 

  • Hwang YT, Chu SK, Ou ST (2011) Evaluations of FDR-controlling procedures in multiple hypothesis testing. Stat Comput 21:569–583

    Article  MATH  MathSciNet  Google Scholar 

  • James S (1991) Approximate multinormal probabilities applied to correlated multiple endpoints in clinical trials. Stat Med 10:1123–1135

    Article  Google Scholar 

  • Lazowski DA, Ecclestone NA, Myers AM, Paterson DH, Tudor LC, Fitzgerald C, et al (1999) A randomized outcome evaluation of group exercise programs in long-term care institutions. J of Gerontol A Biol Sci 54:M621–M628

    Article  Google Scholar 

  • Läuter J (1996) Exact t and F tests for analyzing studies with multiple endpoints. Biometrics 52:964–970

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann E (1959) Testing statistical hypotheses. Wiley, New York

    MATH  Google Scholar 

  • Liu W (1996) Mulitple tests of a non-hierarchical finite family of hypotheses. J R Stat Soc Series B Methodol 58:455–461

    MATH  Google Scholar 

  • O’Brien PC (1984) Procedures for comparing samples with multiple endpoints. Biometrics 40:1079–1087

    Article  MathSciNet  Google Scholar 

  • Rom DM (1990) A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77:663–665

    Article  MathSciNet  Google Scholar 

  • Rom DM, Connell L (1994) A generalized family of multiple test procedures. Commun Stat Theory Methods 23:3171–3187

    Article  MATH  MathSciNet  Google Scholar 

  • Sarkar SK (1998) Some probability inequalities for ordered MTP2 random variables: a proof of the Simes conjecture. Ann Of Stat 26:494–504

    Article  MATH  Google Scholar 

  • Sarkar SK (2008) On the Simes inequality and its generalization. In: Balakrkshnan N, Peña EA, Silvapulla MJ (eds) Beyond parametrics in interdisciplinary research: festschrift in honor of Professor Pranab K. Sen. Institute of Mathematical Statistics, Beachwood, p  231–242

    Chapter  Google Scholar 

  • Sarkar SK, Chang C-K (1997) The Simes method for multiple hypothesis testing with positively dependent test statistics. J Am Stat Assoc 92:1601–1608

    Article  MATH  MathSciNet  Google Scholar 

  • Sarkar SK, Guo W, Finner H (2012) On adaptive procedures controlling the familywise error rate. J Stat Plan Inference 142:65–78

    Article  MATH  MathSciNet  Google Scholar 

  • Sen PK (1999) Some remarks on Simes-type multiple tests of significance. J Stat Plan Inference 82:139–145

    Article  MATH  Google Scholar 

  • Simes RJ (1986) An improved bonferroni procedure for multiple tests of significance. Biometrika 73:751–754

    Article  MATH  MathSciNet  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York

    MATH  Google Scholar 

  • Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Series B Stat Methodol 66:187–205

    Article  MATH  MathSciNet  Google Scholar 

  • Tang D, Geller NC, Pocock SJ (1993) On the design and analysis of randomized clinical trials with multiple endpoints. Biometrics 49:23–30

    Article  MATH  MathSciNet  Google Scholar 

  • van der Laan M Dudoit S Pollard K (2004) Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol Biol 3.doi:10.2202/1544–6115.1042

    Google Scholar 

  • Westfall PH Young SS (1993) Resampling-based multiple testing: examples and methods for p-value adjustment. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lawrence Gould .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Technical Details

1.1 A1.1 Acceptance Sets

Let Xi denote the i-th of K measures of the effect of an intervention obtained from a trial, with marginal cumulative distribution function (cdf) \({{\text{F}}_{\text{i}}}\left( \text{x;}\,{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}} \right)\), where θi characterizes the intervention effect. The null hypothesis of no intervention effect with respect to the i-th measure Xi is H0i: \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\theta\!\!\text{ }}_{\text{i0}}}\) and the alternative is H1i: \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}\ne {{\text{ }\!\!\theta\!\!\text{ }}_{\text{i0}}}\). These could be expressed as one-sided hypotheses H1i: \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}>{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i0}}}\). The global null hypothesis of no overall intervention effect,  \({{\text{H}}_{0}}\,=\,\bigcap\nolimits_{\text{i}\,=\,1}^{\text{K}}{{{\text{H}}_{0\text{i}}}}\) is false if any individual null hypothesis is false. Let pi denote the usual p value (unadjusted for multiplicity) calculated for testing H0i, \(\text{i=1}\), …, K so that H0i would be rejected at the 100α% level of significance if pi < α when multiplicity is ignored. Denote the ordered values of p1, …, pK by \({{\text{p}}_{\left( 1 \right)}}\le {{\text{p}}_{\left( 2 \right)}}\le \ldots \le {{\text{p}}_{\left( \text{K} \right)}}\)

Let \({{\alpha }_{1}}\le {{\alpha }_{2}}\le \ldots \,\,{{\alpha }_{\text{K}}}\) denote a set of adjusted Type 1 error rates for the ordered p values, and let Ai (h) denote the set of realizations of Xi for which H0i: \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}=\text{ }\!\!\theta\!\!\text{ }_{\text{i}}^{\left( 0 \right)}\,\) would not be rejected at the 100αh% level of significance, that is, for which \({{\text{p}}_{\text{i}}}>{{\alpha }_{\text{h,}}}\,\text{i=1}\), …, K. Ai (h) is the “acceptance set” for measure Xi when the null hypothesis H0i is tested at level αh. For positive integers h and h΄ between 1 and K,

$$\begin{aligned} & \text{h}\,<\,{{\rm h}'}\ \Rightarrow \ (\text{i})\ {{\alpha }_{\rm h}}\,\le \,{{\alpha }_{\rm h'}} \\ & (\text{ii)}\ {{\text{A}}_{\text{i}}}^{({{\rm h}')}}\,\subset \,{{\text{A}}_{\text{i}}}^{(\text{h})} \\ & (\text{iii})\ {{\text{A}}_{\text{i}}}^{({\rm h})}{{\text{A}}_{\text{i}}}{{^{({\rm h }')}}}={{\text{A}}_{\text{i}}}^{(\text{h})}\,\bigcap \,{{\text{A}}_{\text{i}}}{{^{({\rm h}')}}}={{\text{A}}_{\text{i}}}{{^{(\text{h }\!\!'\!\!\text{ )}}}} \\ & (\text{iv})\ {{\text{A}}_{\text{i}}}^{(\text{h})}\,\cup \,{{\text{A}}_{\text{i}}}^{(\text{h }\!\!'\!\!\text{ )}}\,=\,{{\text{A}}_{\text{i}}}^{(\text{h})} \\ \end{aligned}$$
(A1)

For notational convenience,

$${{\text{A}}_{\text{i}}}^{(\text{h})}\,\cup \,{{\text{A}}_{\text{i}}}^{(\text{h }\!\!'\!\!\text{ )}}\,=\,{{\text{A}}_{\text{i}}}^{(\text{h})}$$

\(\text{A}_{-\text{j}}^{\left( \text{h} \right)}\,\equiv \,\text{ }\!\!~\!\!\text{ }\bigcup\nolimits_{\begin{matrix} i\,=\,1, \\ i\ne j \\\end{matrix}}^{\text{K}}{\text{A}_{\text{i}}^{\left( \text{h} \right)}}\)

and, in general,

$$\text{A}_{-{{\text{j}}_{1}}{{\text{j}}_{2}}\cdots }^{\left(\text{h} \right)}\,\equiv \,\text{ }\!\!~\!\!\text{}\bigcap\nolimits_{\begin{aligned} \text{i}\,=\,1, \\\text{i}\,\ne \,{{\text{j}}_{1}}{{\text{j}}_{2}}\cdots \\\end{aligned}}^{\text{K}}{\text{A}_{\text{i}}^{(\text{h})}}$$

A(h) is the set of outcomes such that all of the p values exceed αh and ~A(h) denotes its complement.

1.2 A1.2 Rejection Regions

Denote by

$${{\text{S}}_{\text{1}}}\,=\,\tilde{\ }{{\text{A}}^{(\text{1})}}$$

the set of outcomes for which \({{\text{p}}_{\left( 1 \right)}}\le {{\alpha }_{1}}\). S1 is the set of outcomes among X1, …, XK for which at least one of the component hypotheses H01, …, H0K would be rejected at the 100α1 % level. If \({{\alpha }_{1}}=\alpha \), the nominal type 1 error rate, then controlling the FWER at α requires P(S1 | H0) ≤ α, which implies that \({{\alpha }_{1}}\le 1-{{(1-\alpha )}^{1/K}}\) = αS if the outcomes are independent. The Bonferroni approach replaces αS with \({{\alpha }_{\text{B}}}=\alpha /\text{K}{{\alpha }_{\text{S}}}\).

Let

$${{\text{S}}_{2}}\,=\,\tilde{\ }\bigcup\nolimits_{\text{i}\,=\,1}^{\text{K}}{\text{A}_{-\text{i}}^{(2)}}$$

denote the set of outcomes X1, …, XK for which p(2) ≤ α2, and let

$${{\text{S}}_{3}}\,=\,\tilde{\ }\mathop{\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<\,{{\text{i}}_{2}}}{\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{(3)}}}}^{}$$

denote the set of outcomes for which p(3) < α3. S3 is the set of outcomes for which at least three of the component null hypotheses are rejected at the 100α3 % level.

Lemma: The set of outcomes for which the global null hypothesis will be rejected if \({{\text{p}}_{\left( 1 \right)}}<{{\alpha }_{1}}\) or \({{\text{p}}_{\left( 2 \right)}}<{{\alpha }_{2}}\) or \({{\text{p}}_{\left( 3 \right)}}<{{\alpha }_{3}}\) is defined in terms of the acceptance sets by

$${{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}}\,=\,\tilde{\ }\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<\,{{\text{i}}_{2}}}{\left\{ \text{A}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 2 \right)}\mathop{\cup }^{}\text{A}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 1 \right)} \right\}\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)}\,=\,\tilde{\ }\bigcup\nolimits_{\text{i}\,=\,1}^{{{\text{C}}_{\text{K},2}}}{{{\text{E}}_{\text{i}}}}}}$$
(A2)

where \({{\text{C}}_{\text{K},\text{2}}}\,=\,\text{K}\left( \text{K}-\text{1} \right)/\text{2}\).

Proof:

Repeated application of relationship (iii) of (A1) yields:

$$~\sim ({{S}_{1}}\cup {{S}_{2}})\,=\,~\sim {{S}_{1}}\cap ~\sim {{S}_{2}}\,=\,\bigcup\nolimits_{\text{i}\,=\,1}^{\text{K}}{\left(\bigcap\nolimits_{\text{i}\,=\,1}^{\text{K}}{\text{A}_{\text{i}}^{\text{(1)}}}\right)}\cap \left( \bigcap\nolimits_{\text{j}\,\ne \,\text{i}}{A_{\text{j}}^{(2)}}\right)$$
$$=\bigcup\nolimits_{\text{i}\,=\,1}^{\text{K}}{{}}_{{}}^{{}} \left( \text{A}_{\text{i}}^{(1)}\cap \left( \bigcap\nolimits_{\text{j}\,\ne \,\text{i}}{\text{A}_{\text{j}}^{(1)}\text{A}_{\text{j}}^{(2)}}\right)\right)$$
$$=\,\bigcup\nolimits_{\text{i}\,=\,1}^{\text{K}}{(\text{A}_{\text{i}}^{\left( 1 \right)}\cap (\bigcap\nolimits_{\text{j}\ne \text{i}}{\text{A}_{\text{j}}^{\left( 2 \right)}}))\,=\,\bigcup\nolimits_{\text{i}\,\text{=1}}^{\text{K}}{\text{A}_{\text{i}}^{(1)}\text{A}_{-\text{i}}^{(2)}}}$$

Expression (A2) follows from

$$\text{ }\!\!~\!\!\text{ }\tilde{\ }({{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}})\,=\,\sim {{\text{S}}_{1}}\cap \tilde{\ }{{\text{S}}_{2}}\cap \tilde{\ }{{\text{S}}_{3}}$$
$$=\,(\bigcup\nolimits_{\text{i}\,=\,1}^{\text{K}}{\text{A}_{\text{i}}^{\left( 1 \right)}\text{A}_{-\text{i}}^{\left( 2 \right)}})\cap (\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<2{{\text{i}}_{2}}}{\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)}}})$$
$$=\,(\text{A}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{A}_{-{{\text{i}}_{1}}}^{\left( 2 \right)}\cup \text{A}_{{{\text{i}}_{2}}}^{\left( 1 \right)}\text{A}_{-{{\text{i}}_{2}}}^{\left( 2 \right)}\cup (\bigcup\nolimits_{\text{i}\ne {{\text{i}}_{1}},{{\text{i}}_{2}}}{\text{A}_{\text{i}}^{\left( 1 \right)}\text{A}_{-\text{i}}^{\left( 2 \right)}}))\cap (\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<\,{{\text{i}}_{2}}}{\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)}}})$$
$$=\,\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<{{\text{i}}_{2}}}{(\text{A}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{A}_{-{{\text{i}}_{1}}}^{\left( 2 \right)}\mathop{\cup }^{}\text{A}_{{{\text{i}}_{2}}}^{\left( 1 \right)}\text{A}_{-{{\text{i}}_{2}}}^{\left( 2 \right)}\mathop{\cup }^{}\left( \bigcup\nolimits_{\text{i}\ne {{\text{i}}_{1}},{{\text{i}}_{2}}}{\text{A}_{\text{i}}^{\left( 1 \right)}\text{A}_{-\text{i}}^{\left( 2 \right)}} \right))}}\cap \text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)}$$
$$=\,\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<{{\text{i}}_{2}}}{\left( \text{A}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 2 \right)}\cup \text{A}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 1 \right)}\cup \text{A}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 2 \right)} \right)}}\cap \text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)}$$

from relationship (iii) of (A1)

$$=\,\bigcup{\bigcup\nolimits_{{{\text{i}}_{1}}\,<{{\text{i}}_{2}}} {\left( \text{A}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 2 \right)}\cup \text{A}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 1 \right)} \right)}}\cap \text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)}$$

from relationship (iv) of (A1)QED

1.3 A1.3 Probabilities Associated with Rejection Regions

In general (Feller 1957, p. 89), the probability associated with the events Ei in (A2) is given by

$$\text{P}\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}} \right)\,=\,1-\text{P}\left( \bigcup\nolimits_{\text{i}\,=\,1}^{{{\text{C}}_{\text{K},2}}}{{{\text{E}}_{\text{i}}}} \right)$$
(A3)
$$=\,1\,-\,\left\{ \underset{\text{i}\,=\,1}{\overset{{{\text{C}}_{\text{K},2}}}{\mathop \sum }}\,\text{P}\left( {{\text{E}}_{\text{i}}} \right)-\underset{\text{h}\,=\,2}{\overset{{{\text{C}}_{\text{K},2}}}{\mathop \sum }}\,{{\left( -1 \right)}^{\text{h}}}\underset{{{\text{i}}_{1}}\,<-}{\mathop \sum }\,\underset{{{\text{i}}_{2}}\,<-}{\mathop \sum }\,\cdots \underset{{{\text{i}}_{\text{h}}}}{\mathop \sum }\,\text{P}({{\text{E}}_{{{\text{i}}_{1}}}}{{\text{E}}_{{{\text{i}}_{2}}}}\cdots {{\text{E}}_{{{\text{i}}_{\text{h}}}}}) \right\}$$

Expressions for the joint probabilities in (A3) simplify appreciably because of the relationships among the acceptance sets. The general result is given in the following.

Theorem:

$$\text{P}\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}} \right)$$
(A4)

\(\, = \,1 - \left\{ {\sum\nolimits_{{\rm{i}}\, = \,1}^{{{\rm{C}}_{{\rm{K}},2}}} {{\rm{P}}\left( {{{\rm{E}}_{\rm{i}}}} \right) - \left( {{\rm{K}} - 2} \right)} \mathop {\;\sum\nolimits_{{\rm{j}}\, = \,1}^{\rm{K}} {{\rm{P}}\left( {{\rm{A}}_{\rm{j}}^{\left( 1 \right)}{\rm{A}}_{ - {\rm{j}}}^{\left( 3 \right)}} \right)} }\limits_{}^{} \, + \,{{\rm{C}}_{{\rm{K}} - 1,2}}{\rm{P}}\left( {{{\rm{A}}^{\left( 3 \right)}}} \right){\rm{}}} \right\}\)

where the Ei are defined by (A2).

Proof:

From the Lemma, and the fact that P(A\(\mathop{\cup }^{}\)B) = P(A) + P(B)—P(AB),

$$\text{P}\left( {{\text{E}}_{\text{i}}} \right)\,=\,\text{P}\left( \text{A}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 2 \right)}\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)} \right)\,+\,\text{P}\left( \text{A}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 1 \right)}\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)} \right)\,-\,\text{P}\left( \text{A}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{A}_{{{\text{i}}_{2}}}^{\left( 2 \right)}\text{A}_{-{{\text{i}}_{1}}{{\text{i}}_{2}}}^{\left( 3 \right)} \right)$$

A typical product EiEj can be written as

$${{\text{E}}_{\text{i}}}{{\text{E}}_{\text{j}}}=\left( \text{A}_{{{\text{i}}_{\text{1}}}}^{\text{(1)}}\text{A}_{{{\text{i}}_{\text{2}}}}^{\text{(2)}}\cup \text{A}_{{{\text{i}}_{\text{1}}}}^{\text{(2)}}\text{A}_{{{\text{i}}_{\text{2}}}}^{\text{(1)}} \right)\ \left( \text{A}_{{{\text{i}}_{\text{3}}}}^{\text{(1)}}\text{A}_{{{\text{i}}_{\text{4}}}}^{\text{(2)}}\cup \text{A}_{{{\text{i}}_{\text{3}}}}^{\text{(2)}}\text{A}_{{{\text{i}}_{\text{4}}}}^{\text{(1)}} \right)\text{A}_{\text{-}{{\text{i}}_{\text{1}}}{{\text{i}}_{\text{2}}}}^{\text{(3)}}\text{A}_{\text{-}{{\text{i}}_{\text{3}}}{{\text{i}}_{\text{4}}}}^{\text{(3)}}$$

The pairs (i1, i2) and (i3, i4) are the index pairs of Ei and Ej, respectively. If i1, i2, i3, and i4 are four distinct integers, then EiEj = A(3). Otherwise, if \({{\text{i}}_{1}}={{\text{i}}_{3}}=\text{k}\) or \({{\text{i}}_{2}}={{\text{i}}_{4}}=\text{k}\), then EiEj = \(A_{\rm k}^{(1)}A_{-{\rm k}}^{(3)}\) Hence, P(EiEj) = Pr(A(3)) or P(\(A_{\rm k}^{(1)}A_{-{\rm k}}^{(3)}\)) depending on whether Ei and Ej do not or do share a common index value. The product \({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\)  = A(3) if the indices of the A sets for any two E factors consist of four distinct integers. Also, if k is one of the members of the index pair corresponding to each Ei of the product \({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\), then the product is equal to \(A_{\rm k}^{(1)}A_{-{\rm k}}^{(3)}\). Consequently, P(\({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\)) = P(A(3)) or P(\(A_{\rm k}^{(1)}A_{-{\rm k}}^{(3)}\)) accordingly as the factors of the product \({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\) do not or do share a common index value. All told, there are \(\left( \begin{matrix} {{C}_{{\rm K},2}} \\ {\rm h} \\\end{matrix} \right)\) distinct h-tuples \({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\). As long as h < K, there are \(\left( \begin{matrix} {\rm K}-1 \\ {\rm h} \\\end{matrix} \right)\) ways to choose h additional distinct indices to pair with any index value i to form \({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\) products whose members’ index pairs all contain i. Consequently, the term P \((A_{\rm i}^{(1)}A_{-{\rm i}}^{(3)})\) occurs \(\left( \begin{matrix} {\rm K}-1 \\ {\rm h} \\\end{matrix} \right)\) times in the sum \(\sum\limits_{{{\rm i}_{1}}<}{\sum\limits_{{{\rm i}_{2}}<}{\cdots \sum\limits_{<{{\rm i}_{\rm h}}}{{\rm P}({{E}_{{{\rm i}_{1}}}}{{E}_{{{\rm i}_{2}}}}\cdots }}}{{E}_{{{\rm i}_{\rm h}}}})\) and this is true for each value of i, so there are K\(K\left( {\begin{array}{*{20}{c}} {{\rm K} - 1} \\ {\rm h} \\ \end{array}}\right)\) such terms. The remaining \(\left( {\begin{array}{*{20}{c}} {{C_{{\rm K},2}}} \\ {\rm h}\\ \end{array}} \right)\)—K\(\left( {\begin{array}{*{20}{c}} {{\rm K} - 1} \\ {\rm h} \\ \end{array}} \right)\) terms of the sum all equal P(A(3)). If h ≥ K, then all of the products \({{E}_{{{\rm i}_{1}}}}\cdots {{E}_{{{\rm i}_{\rm h}}}}\) must equal A(3) and so P(A(3)) must occur \(\left( {\begin{array}{*{20}{c}} {{C_{{\rm K},2}}} \\ {\rm h} \\ \end{array}} \right)\) times in the sum \(\sum\limits_{{{\text{i}}_{\text{1}}}<}{\sum\limits_{{{\text{i}}_{2}}<}{\cdots \sum\limits_{<{{\text{i}}_{\text{h}}}}{\text{P}({{\text{E}}_{{{\text{i}}_{\text{1}}}}}{{\text{E}}_{{{\text{i}}_{2}}}}\cdots }}}{{\text{E}}_{{{\text{i}}_{\text{h}}}}})\). This completes the proof.

Expression (A4) does not require independence or continuity of the outcome variables. Computationally useful forms can be obtained by assuming independence, as in the following corollaries.

Corollary 1

If the outcome variables are independent and \(\text{P}\left( \text{A}_{\text{i}}^{\left( \text{h} \right)} \right)\,=\,\text{p}_{\text{i}}^{\left( \text{h} \right)}\), then

$$\text{P}\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}} \right)$$
$$\,=\,1-\left\{ \begin{matrix} \sum\nolimits_{{{\text{i}}_{1}}\,<={{\text{i}}_{2}}}{\left( \text{p}_{{{\text{i}}_{1}}}^{\left( 1 \right)}\text{p}_{{{\text{i}}_{2}}}^{\left( 2 \right)}\,+\,\text{p}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{p}_{{{\text{i}}_{2}}}^{\left( 1 \right)}-\text{p}_{{{\text{i}}_{1}}}^{\left( 2 \right)}\text{p}_{{{\text{i}}_{2}}}^{\left( 2 \right)} \right)}\prod\nolimits_{\text{j}\ne {{\text{i}}_{1}},{{\text{i}}_{2}}}{\text{p}_{\text{j}}^{\left( 3 \right)}} \\ -\left( K-2 \right)\sum\nolimits_{\text{i}\,=\,1}^{\text{K}}{\text{p}_{\text{i}}^{\left( 1 \right)}}\prod\nolimits_{\text{j}\ne \text{i}}{\text{p}_{\text{j}}^{\left( 3 \right)}}\,+\,{{\text{C}}_{\text{K}-1,2}}\prod\nolimits_{\text{i}\,=\,1}^{\text{K}}{\text{p}_{\text{i}}^{\left( 3 \right)}} \\\end{matrix} \right\}$$
(A5)

Corollary 2

If the outcome variables are independent and continuous, and all of the component null hypotheses are true, so that \(\text{p}_{\text{i}}^{\left( \text{h} \right)}\) = 1—αh, then the probability of rejecting the global null hypothesis is

$$\text{P}\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}} \right)$$
$$=\,\text{1} – {{{\text{C}}_{\text{K},\text{2}}}{{(\text{1}-{{\alpha }_{\text{3}}})}^{\text{K}-\text{2}}}(\text{1}-{{\alpha }_{\text{2}}})(\text{1}-\text{2}{{\alpha }_{\text{1}}}\,+\,{{\alpha }_{\text{2}}}) – \text{K}\left( \text{K}-\text{2} \right)(\text{1}-{{\alpha }_{\text{1}}}){{(\text{1}-{{\alpha }_{\text{3}}})}^{\text{K}-\text{1}}}\,+\,{{\text{C}}_{\text{K}-\text{1},\text{2}}}{{(\text{1}-{{\alpha }_{\text{3}}})}^{\text{K}}}}$$

This is the same as expression (3.3) of Sen (1999), when r = 3.

1.4 A1.4 Critical Values

Corollary 2 implies that the global null hypothesis test will have level at most α under independence and continuity if and only if

$$\text{f}({{\alpha }_{\text{1}}},{{\alpha }_{\text{2}}},{{\alpha }_{\text{3}}})\,=\,{{\text{C}}_{\text{K},\text{2}}}{{(\text{1}-{{\alpha }_{\text{3}}})}^{\text{K}-\text{2}}}(\text{1}-{{\alpha }_{\text{2}}})(\text{1}-\text{2}{{\alpha }_{\text{1}}}\,+\,{{\alpha }_{\text{2}}}) – \text{K}\left( \text{K}-\text{2} \right)(\text{1}-{{\alpha }_{\text{1}}}){{(\text{1}-{{\alpha }_{\text{3}}})}^{\text{K}-\text{1}\,}}\,+\,{{\text{C}}_{\text{K}-\text{1},\text{2}}}{{(\text{1}-{{\alpha }_{\text{3}}})}^{\text{K}}}\,\ge \,1\,-\,\alpha $$
(A6)

Given α1, the maximum value of f in (A6) occurs when \({{\alpha }_{2}}={{\alpha }_{3}}={{\alpha }_{1}}\) (the derivative of f with respect to \({{\alpha }_{2}}\) is zero when \({{\alpha }_{2}}={{\alpha }_{1}}\); the derivative of f with respect to \({{\alpha }_{3}}\) is zero when \({{\alpha }_{3}}={{\alpha }_{1}}\) if \({{\alpha }_{2}}={{\alpha }_{1}}\)). Inequality (A6) is satisfied if and only if \({{\alpha }_{1}}\le {{\alpha }_{\text{S}}}\). If \({{\alpha }_{1}}={{\alpha }_{\text{S}}}\), then f\(\left( {{\alpha }_{1}},{{\alpha }_{2}},\,{{\alpha }_{3}}\, \right)=1\,\alpha \) so that neither \({{\alpha }_{2}}\) nor \({{\alpha }_{3}}\) can exceed \({{\alpha }_{\text{S}}}\) (Berger 1982). If \({{\alpha }_{1}}<{{\alpha }_{S}}\), which would be true if \({{\alpha }_{1}}<{{\alpha }_{\text{B}}}\), then \({{\alpha }_{2}}\) and \({{\alpha }_{3}}\) both can exceed \({{\alpha }_{1}}\). This is the key point. In particular, (A6) can be satisfied for \({{\alpha }_{3}}=\alpha \) and \({{\alpha }_{2}}=2{{\alpha }_{1}}\) as long as \({{\alpha }_{1}}\le {{\alpha }_{1\text{max}}}\), where

$${{\alpha }_{\text{1max}}}\,=$$
$$\frac{{{\text{C}}_{\text{K},2}}-\text{K}\left( \text{K}-2 \right)\left( 1-\text{ }\!\!\alpha\!\!\text{ } \right)\,+\,{{\text{C}}_{\text{K}-1,2}}{{\left( 1-\text{ }\!\!\alpha\!\!\text{ } \right)}^{2}}-{{\left( 1-\text{ }\!\!\alpha\!\!\text{ } \right)}^{3-\text{K}}}\text{ }\!\!~\!\!\text{ }}{\text{K}\left( \text{K}-1-\left( \text{K}-2 \right)\left( 1-\text{ }\!\!\alpha\!\!\text{ } \right) \right)}$$

It is easy to verify that \({{\alpha }_{1\text{max}}}>0\) when \(\alpha =0.05\) as long as K ≤ K(0.05) = 16. Smaller values of α allow for greater values of \(\text{K}\left( \alpha \right)\): K(0.025) = 25 and K(0.01) = 44. The value of \({{\alpha }_{1\text{max}}}\) is not much smaller than \(\alpha /\text{K}\) when \(\text{K}\le \text{10}\). Table 29.1 in Sect. 2 displays the values of \({{\alpha }_{1\text{max}}},\,\alpha /\text{K}\), and their difference for \(\alpha =0.05\) and 0.25, and K = 3(1)16. The quantity \(\text{ }\!\!\varepsilon\!\!\text{ }\) mentioned in the introduction is the difference between \({{\alpha }_{1\text{max}}}\) and \({{\alpha }_{\text{B}}}=\alpha /\text{K}\) .

1.5 A1.5 Power

The power and, therefore, the sample size needed, for rejecting a global null hypothesis will depend on the joint distribution of the outcomes under an alternative hypothesis. An alternative hypothesis could specify a constant shift for each component outcome such as \({{\text{H}}_{1\text{i}}}:\,{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\theta\!\!\text{ }}_{\text{i0}}}\) for all i. Or, the alternative hypothesis could specify a shift with respect to some, but not all, of the component outcome distributions, so that the alternative hypothesis would be defined by \({{\text{H}}_{1\text{i}}}:\,{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\theta\!\!\text{ }}_{\text{i1}}}\ne {{\text{ }\!\!\theta\!\!\text{ }}_{\text{i0}}}\) for i \(\in \) {i 1, …, i m} ⊂ {1, …, K}, and \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\theta\!\!\text{ }}_{\text{i0}}}\) otherwise.

If the outcomes are independent, then the probability of rejecting the global null hypothesis when there is a shift in m (1 ≤ m ≤ K) of the component distributions, is, from (A5)

$$\text{P}\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}} \right)\,=\,1$$
(A7)
$$\left\{ {\begin{aligned} {\left[ {{{\rm{C}}_{{\rm{K}}- 1,2}}\gamma_3 - {\rm{m}}{{( {{\rm{K}} - 2})}\gamma_1}}\right]\gamma_3^{{\rm{m}} - 1}{{\left( {1{ -\alpha _3}}\right)}^{{\rm{K}} - {\rm{m}}}}} \\ { +{{\rm{C}}_{{\rm{m}},2}}{{\left( {{2\gamma_1}{ - \gamma_2}}\right)}\gamma_2}\gamma_3^{{\rm{m}} - 2}{{\left( {1{ - \alpha_3}}\right)}^{{\rm{K}} - {\rm{m}}}}\qquad \rm{m}> 1} \\ { + \left({{\rm{K}} - {\rm{m}}} \right)\left[ {\begin{aligned} {\left({{\rm{m}} - 1} \right)\left[ {\left( {\gamma_1{ - \gamma_2}}\right)\left( {1{ - \alpha_2}} \right){ + \gamma_2}\left( {1{ -\alpha_1}} \right)} \right]}\\ { - \left({{\rm{K}} - 2} \right){{\left( {1{ - \alpha_1}} \right)}\gamma_3}} \\\end{aligned}} \right]\gamma_3^{{\rm{m}} - 1}{{\left( {1{ - \alpha_3}}\right)}^{{\rm{K}} - {\rm{m}} - 1}}} \\ {m < K} \\ { +{{\rm{C}}_{{\rm{K}} - {\rm{m}},2}}\left( {1 - {2\alpha_1}{ +\alpha_2}} \right)\left( {1{ - \alpha_2}}\right)\gamma_3^{\rm{m}}{{\left( {1{- \alpha_3}} \right)}^{{\rm{K}} - {\rm{m}} - 2}}m < K - 1} \\\end{aligned}} \right\}$$

where \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{K}}}\) denotes the probability of a component event falling inside its level \({{\alpha }_{\text{K}}}\) acceptance set when H1i is true. If H0i is true, then \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{K}}}=1-\,{{\alpha }_{\text{K}}};\) if H1i is true, then \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{K}}}\) denotes the corresponding type 2 error rate (assumed same for all components).

The functional form of F, the distribution generating the observations, is needed to calculate the type 2 error rates \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{i}}}\) in (A7) corresponding to the type 1 error rates \({{\alpha }_{\text{i}}},\,\text{i}=1,2,3\). Suppose the probabilities \(\text{p}_{\text{i}}^{(\text{h})}\) in (A5) can be calculated from

$$\text{p}_{\text{i}}^{\text{(h)}}=\text{pr(A}_{\text{i}}^{\text{(h)}}\text{)}=\text{F(}{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}+{{\zeta }_{\text{1-}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{h}}}/2}};\xi )-\text{F(}{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}+{{\zeta }_{{{\alpha }_{h}}/2}};\xi )$$
(A8)

for two-sided tests of H0i: \({{\theta }_{\text{i}}}=0\) vs \({{\text{H}}_{1\text{i}}}:\,|{{\theta }_{\text{i}}}|>0\), where F denotes an appropriate cumulative distribution function such as the standard normal, Student t, etc., \(\xi \) denotes parameters with known values such as the degrees of freedom, \({{\theta }_{\text{i}}}\,\left( \ge 0 \right)\) denotes the expectation of the i-th component outcome under the alternative hypothesis, and the \(\zeta \) are percentiles of the null distribution of the appropriate test statistic. For power calculations under independence, we want \(\text{p}_{\text{i}}^{\text{(h)}}\,\le {{\text{ }\!\!\gamma\!\!\text{ }}_{\text{h}}}\) if \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\theta\!\!\text{ }}_{\text{i1}}}>0\) and \(\text{p}_{\text{i}}^{\text{(h)}}\) ≥ 1 − αh if θi = 0. The first term on the right-hand side of (A8) will be only slightly less than 1 when Δi > 0, so that the requirement \(\text{p}_{\text{i}}^{\text{(h)}}\,\le {{\text{ }\!\!\gamma\!\!\text{ }}_{\text{h}}}\) if \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\theta\!\!\text{ }}_{\text{i1}}}>0\) implies that a slightly conservative estimate of \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i1}}}\) is

$${{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}\,\cong \,{{\text{ }\!\!\zeta \!\!\text{ }}_{1-\text{ }\!\!\gamma\!\!\text{ }}}\,-\,{{\text{ }\!\!\zeta \!\!\text{ }}_{{{\alpha }_{\text{h/2}}}}}$$
(A9)

The value of \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}\) must be the same for all h. Consequently, if \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}\) is determined by \({{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\) and \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{1}}}\) in (A9), then \({{\text{ }\!\!\gamma\!\!\text{ }}_{2}}\) and \({{\text{ }\!\!\gamma\!\!\text{ }}_{3}}\) must be determined from

$${{\text{ }\!\!\zeta \!\!\text{ }}_{1{{\text{ }\!\!\gamma\!\!\text{ }}_{\text{h}}}}}={{\text{ }\!\!\zeta \!\!\text{ }}_{1-{{\text{ }\!\!\gamma\!\!\text{ }}_{1}}}}\,-\,{{\text{ }\!\!\zeta \!\!\text{ }}_{{{\text{ }\!\!\alpha\!\!\text{ }}_{1}}/2}}\,+\,{{\text{ }\!\!\zeta \!\!\text{ }}_{{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{h}}}/2}}$$

i.e., \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{h}}}\,-\,\text{1}\,\,\text{F}({{\text{ }\!\!\zeta \!\!\text{ }}_{1-{{\text{ }\!\!\gamma\!\!\text{ }}_{1}}}}\,-\,{{\text{ }\!\!\zeta \!\!\text{ }}_{{{\alpha }_{1}}/2}}\,\text{+}\,{{\text{ }\!\!\zeta \!\!\text{ }}_{{{\alpha }_{\text{h}}}/2}}\text{;}\ \text{ }\!\!\theta\!\!\text{ })\).

The quantity \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i1}}}\) is the value of the noncentrality parameter that gives power \(\text{1-}{{\text{ }\!\!\gamma\!\!\text{ }}_{\text{1}}}\) for rejecting the i-th individual null hypothesis H0i when \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}\text{=}{{\text{ }\!\!\theta\!\!\text{ }}_{\text{i1}}}\). It determines the required sample size through expressions such as \({{\text{ }\!\!\theta\!\!\text{ }}_{\text{i}}}={{\text{ }\!\!\mu\!\!\text{ }}_{\text{i}}}\surd \text{n/}\sigma \) when the values of \({{\text{ }\!\!\mu\!\!\text{ }}_{\text{i}}}\) and \(\sigma \) are specified. Table 29.2 in Sect. 2 above provides noncentrality parameters values calculated assuming normality using (A9) for K = 3 (1) 16 and when m = 1 (1) min(5,K) = number of positive means.

1.6 A1.6 Confidence Sets

Let θ denote the parameters of the joint distribution of the K outcomes addressed by the null hypothesis H0: \(\text{ }\!\!\theta\!\!\text{ =}{{\text{ }\!\!\theta\!\!\text{ }}_{\text{0}}}\). H0 is rejected at the 100α% level when Pr\(\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}}\text{ }\!\!\theta\!\!\text{ =}{{\text{ }\!\!\theta\!\!\text{ }}_{0}} \right)\le \alpha \). A 100(1-α)% joint confidence region for \(\text{ }\!\!\theta\!\!\text{ }\) consists of the parameter values for which H0 would not be rejected, i.e., \(\left\{ {{\text{ }\!\!\theta\!\!\text{ }}^{*}}|\text{P}\left( {{\text{S}}_{1}}\cup {{\text{S}}_{2}}\cup {{\text{S}}_{3}}|~{{\text{ }\!\!\theta\!\!\text{ }}^{\text{*}}} \right)\,\ge \,\text{ }\!\!\alpha\!\!\text{ }\!\!|\!\!\text{ } \right\}\)(Lehmann 1959, Theorem 4, p. 79). The region resembles a notched hyper-rectangle when the outcomes are independent (Benjamini and Stark 1996).

Appendix 2 R Code for Simulations

figure a
figure b
figure c
figure d
figure e
figure f
figure g

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gould, A. (2015). A Simple Method for Testing Global and Individual Hypotheses Involving a Limited Number of Possibly Correlated Outcomes. In: Chen, Z., Liu, A., Qu, Y., Tang, L., Ting, N., Tsong, Y. (eds) Applied Statistics in Biomedicine and Clinical Trials Design. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-12694-4_29

Download citation

Publish with us

Policies and ethics