Skip to main content

Algorithms for the Maximum Weight Connected \(k\)-Induced Subgraph Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

Finding differentially regulated subgraphs in a biochemical network is an important problem in bioinformatics. We present a new model for finding such subgraphs which takes the polarity of the edges (activating or inhibiting) into account, leading to the problem of finding a connected subgraph induced by \(k\) vertices with maximum weight. We present several algorithms for this problem, including dynamic programming on tree decompositions and integer linear programming. We compare the strength of our integer linear program to previous formulations of the \(k\)-cardinality tree problem. Finally, we compare the performance of the algorithms and the quality of the results to a previous approach for finding differentially regulated subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S., Karakostas, G.: A 2 + \(\epsilon \) approximation algorithm for the k-MST problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 754–759. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  2. Álvarez Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 245–270. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Blum, C., Blesa, M.J.: New metaheuristic approaches for the edge-weighted K-cardinality tree problem. Comput. Oper. Res. 32(6), 1355–1377 (2005)

    Article  Google Scholar 

  4. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities - an \({O}(n^{1/4})\) approximation for densest \(k\)-subgraph. In: Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10, pp. 201–210. ACM, New York (2010)

    Google Scholar 

  5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Backes, C., Rurainski, A., Klau, G.W., Müller, O., Stöckel, D., Gerasch, A., Küntzer, J., Maisel, D., Ludwig, N., Hein, M., Keller, A., Burtscher, H., Kaufmann, M., Meese, E., Lenhof, H.-P.: An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Res. (2011)

    Google Scholar 

  7. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST problem. J. Comput. Syst. Sci. 58(1), 101–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal K-cardinality trees fast. J. Exp. Algorithmics 14, 5:2.5–5:2.23 (2010)

    Google Scholar 

  9. Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., Jassal, B., Jupe, S., Matthews, L., May, B., Palatnik, S., Rothfels, K., Shamovsky, V., Song, H., Williams, M., Birney, E., Hermjakob, H., Stein, L., D’Eustachio, P.: The reactome pathway knowledgebase. Nucleic Acids Res. 42(D1), D472–D477 (2014)

    Article  Google Scholar 

  10. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded treewidth. J. Discrete Algorithms 16, 67–78 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cohen, N.: Several graph problems and their LP formulation (explanatory supplement for the Sage graph library), July 2010. http://hal.inria.fr/inria-00504914

  12. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24(13), 223–231 (2008)

    Article  Google Scholar 

  13. Dinu, I., Potter, J.D., Mueller, T., Liu, Q., Adewale, A.J., Jhangri, G.S., Einecke, G., Famulski, K.S., Halloran, P., Yasui, Y.: Gene-set analysis and reduction. Briefings Bioinf. 10, 24–34 (2009)

    Article  Google Scholar 

  14. Fix, A., Chen, J., Boros, E., Zabih, R.: Approximate MRF inference using bounded treewidth subgraphs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 385–398. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Fischetti, M., Hamacher, H.W., Jørnsten, K., Maffioli, F.: Weighted k-cardinality trees: complexity and polyhedral structure. Networks 24(1), 11–21 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 302–309, October 1996

    Google Scholar 

  18. Geistlinger, L., Csaba, G., Küffner, R., Mulder, N., Zimmer, R.: From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics 27(13), i366–i373 (2011)

    Article  Google Scholar 

  19. Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual (2014). http://www.gurobi.com/documentation/5.0/reference-manual/

  20. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl. 1), S233–S240 (2002)

    Article  Google Scholar 

  21. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36, 1025–1071 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)

    Google Scholar 

  23. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  24. Ljubić, I.: Exact and memetic algorithms for two network design problems. Ph.D. thesis, Technische Universität Wien (2004). https://www.ads.tuwien.ac.at/publications/bib/pdf/ljubicPhD.pdf

  25. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM 7(4), 326–329 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oracle corporation. Java Platform, Standard Edition 7 (2012). http://docs.oracle.com/javase/7/docs/api/

  27. Quintão, F.P., da Cunha, A.S., Mateus, G.R., Lucena, A.: The k-cardinality tree problem: reformulations and lagrangian relaxation. Discrete Appl. Math. 158(12), 1305–1314 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Quintão, F.P., da Cunha, A.S., Mateus, G.R.: Integer programming formulations for the k-cardinality tree problem. Electron. Notes Discrete Math. 30, 225–230 (2008)

    Article  Google Scholar 

  29. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. U.S.A. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  30. Sathiamoorthy Subbarayan. TreeD: A Library for Tree Decomposition, July 2007. http://itu.dk/people/sathi/treed/

  31. Zhao, X.-M.M., Wang, R.-S.S., Chen, L., Aihara, K.: Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res. 36(9), e48 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Blumenstock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Althaus, E., Blumenstock, M., Disterhoft, A., Hildebrandt, A., Krupp, M. (2014). Algorithms for the Maximum Weight Connected \(k\)-Induced Subgraph Problem. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics