Skip to main content

Alzheimer-Associated Pathology in the Extracellular Space

  • Chapter
  • First Online:
Neuroanatomy and Pathology of Sporadic Alzheimer's Disease

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 215))

Abstract

A clear indicator for the end of the unusually protracted initial phase of the AD-associated pathological process is the abrupt appearance of an additional protein that appears in soluble form in the ISF: the small, i.e., 38–43, but mostly 40 or 42, amino acid-containing hydrophobic amyloid-β (Aβ) protein, that at first is diffusely distributed in a monomeric state in a few circumscribed regions of the ISF but then rapidly forms insoluble aggregations, most of which are plaque-like entities. These Aβ-plaques develop with such consistency in the course of AD that they constitute one of its hallmark lesions (Masters and Selkoe 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnati LF, Bjelke B, Fuxe K (1995) Volume versus wiring transmission in the brain: a new theoretical frame of neuropsychopharmacology. Med Res Rev 15:33–45

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE, Lee EB, Moberg PJ et al (2010) Olfactory epithelium amyloid-β and PHFtau pathology in Alzheimer’s disease. Ann Neurol 67:462–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271

    CAS  PubMed  Google Scholar 

  • Attems J, Jellinger K, Thal DR, Van Nostrand W (2011) Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 37:75–93

    Article  CAS  PubMed  Google Scholar 

  • Beach TG, Sue LI, Walker DG et al (2012b) Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer’s disease: implications for amyloid imaging. J Alzheimers Dis 28:869–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beyreuther K, Masters CL (1991) Amyloid precursor protein (APP) and beta amyloid-42 amyloid in the etiology of Alzheimer’s disease: precursor product relationships in the derangement of neuronal function. Brain Pathol 1:241–252

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, Hampel H (2003) Cerebrospinal fluid markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1990) Alzheimer’s disease: amyloid deposits and neurofibrillary changes in the striatum. J Neuropathol Exp Neurol 49:215–224

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991a) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991b) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2013a) Amyloid-β may be released from non-junctional varicosities of axons generated from abnormal tau-containing brainstem nuclei in sporadic Alzheimer’s disease: a hypothesis. Acta Neuropathol 126:303–306

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2013b) Reply: the early pathological process in sporadic Alzheimer’s disease. Acta Neuropathol 126:615–681

    Article  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J, Lang W (1989b) Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 93:277–287

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Bohl J (1996) Functional anatomy of human hippocampal formation and related structures. J Child Neurol 11:265–275

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Zetterberg H, Del Tredici K, Blennow K (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 126:631–641

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum JD, Thinakaran G, Koliatsos V et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637

    CAS  PubMed  Google Scholar 

  • Campbell SK, Switzer RC, Martin TL (1987) Alzheimer’s plaques and tangles: a controlled and enhanced silver-staining method. Soc Neurosci Abstr 13:678

    Google Scholar 

  • Chételat G (2013) Alzheimer disease: Aβ-independent processes-rethinking preclinical AD. Nat Rev Neurol 9:123–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Chételat G, Fouquet M (2013) Neuroimaging biomarkers for Alzheimer’s disease in asymptomatic APOE4 carriers. Rev Neurol 169:729–736

    Article  PubMed  Google Scholar 

  • Counts SE, Mufson EJ (2012) Locus coeruleus. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Academic Press, New York, NY, pp 425–438

    Chapter  Google Scholar 

  • Dickson DW (1997b) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW, Vickers JC (2001) The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105:99–107

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Duan Y, Hu Y, Zhao Z (2012) Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener 1:1–18

    Article  CAS  Google Scholar 

  • Duyckaerts C (2011) Tau pathology in children and young adults: can you still be unconditionally baptist? Acta Neuropathol 121:145–147

    Article  PubMed  Google Scholar 

  • Elfenbein HA, Rosen RF, Stephens SL et al (2007) Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167

    CAS  PubMed  Google Scholar 

  • Englund H, Degerman Gunnarsson M, Brundin RM et al (2009) Oligomerization partially explains the lowering of Aβ42 in Alzheimer’s disease cerebrospinal fluid. Neurodegener Dis 6:139–147

    Article  CAS  PubMed  Google Scholar 

  • Fagan AM, Mintun MA, Shah AR et al (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1:371–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiala JC (2007) Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 114:551–571

    Article  PubMed  Google Scholar 

  • Frackowiac J, Zoltowska A, Wisniewski HM (1994) Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol 53:637–645

    Article  Google Scholar 

  • Frankfort SV, Tulner LR, van Campen JP et al (2008) Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 3:123–131

    Article  CAS  PubMed  Google Scholar 

  • Giacobini E, Gold G (2013) Alzheimer disease therapy – moving from amyloid-β to tau. Nat Rev Neurol 9:677–686

    Article  CAS  PubMed  Google Scholar 

  • Golde TE, Schneider LS, Koo EH (2011) Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69:203–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimmer T, Henriksen G, Wester HJ et al (2009) Clinical severity of Alzheimer’s disease is associated with PiB uptake in PET. Neurobiol Aging 30:1902–1909

    Article  CAS  PubMed  Google Scholar 

  • Grinberg LT, Korczyn AD, Heinsen H (2012) Cerebral amyloid angiopathy impact on endothelium. Exp Gerontol 47:838–842

    Article  PubMed Central  PubMed  Google Scholar 

  • Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardy JA (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9:151–153

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Devidze N, Verret L et al (2010) Transsynaptic progression of amyloid-β-induced neuronal dysfunction within entorhinal-hippocampal network. Neuron 68:428–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyman BT, Trojanowski JQ (1997) Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Kromer LJ, van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450:392–397

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Marzloff K, Arrigada PV (1993) The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol 52:594–600

    Article  CAS  PubMed  Google Scholar 

  • Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    Article  PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr (2012) Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 263:344–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jagust WJ, Landau SM, Alzheimer’s Disease Neuroimaging Initiative (2012) Apolipoprotein E, not fibrillary β-amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci 32:18227–18233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalus P, Braak H, Braak BJ (1989) The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes. Brain Res 494:198–203

    Article  CAS  PubMed  Google Scholar 

  • Karran E, Mercken M, de Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  • Kepe V, Moghbei MC, Långström B et al (2013) Amyloid-β positron emission tomography imaging probes: a critical review. J Alzheimers Dis 36:613–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitt CA, Price DL, Struble RG et al (1985a) Evidence for cholinergic neurites in senile plaques. Science 226:1443–1445

    Article  Google Scholar 

  • Kitt CA, Struble RG, Cork LC et al (1985b) Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates. Neuroscience 16:691–699

    Article  CAS  PubMed  Google Scholar 

  • Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast axonal transport. Proc Natl Acad Sci USA 87:1561–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korczyn AD (2008) The amyloid cascade hypothesis. Alzheimers Dement 4:176–178

    Article  CAS  PubMed  Google Scholar 

  • Kovács T, Cairns NJ, Lantos PL (1999) β-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491

    Article  PubMed  Google Scholar 

  • Lazarov O, Morfini GA, Lee EB et al (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25:2386–2395

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chohan MO, Grundke-Iqbal I, Iqbal K (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Love S, Chalmers K, Ince P et al (2014) Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue. Am J Neurodegener Dis 3:19–32

    PubMed Central  PubMed  Google Scholar 

  • Mackic JB, Bading J, Ghiso J et al (2002) Circulating amyloid-beta peptide crosses the blood-brain barrier in aged monkeys and contributes to Alzheimer’s disease lesions. Vascul Pharmacol 38:303–313

    Article  CAS  PubMed  Google Scholar 

  • Mann DMA, Hardy J (2013) Amyloid or tau – the chicken or the egg? Acta Neuropathol 126:609–613

    Article  PubMed  Google Scholar 

  • Masliah E, Alford M, Adame A et al (2003) Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 61:206–211

    Article  CAS  PubMed  Google Scholar 

  • Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer’s disease. Cold Spring Harb Perspect Med 2:a006262

    Article  PubMed Central  PubMed  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mattsson N, Portelius E, Rolstad S et al (2012) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30:767–778

    CAS  PubMed  Google Scholar 

  • Mirra S, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  • Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338

    Article  PubMed Central  PubMed  Google Scholar 

  • Mufson EJ, Chen EY, Cochran EJ et al (1999) Entorhinal cortex β-amyloid load in individuals with mild cognitive imüairment. Exp Neurol 158:469–490

    Article  CAS  PubMed  Google Scholar 

  • Munoz DG, Wang D (1992) Tangle-associated neuritic clusters. A new lesion in Alzheimer’s disease and aging suggests that aggregates of dystrophic neurites are not necessarily associated with beta/A4. Am J Pathol 140:1167–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muresan Z, Muresan V (2008) Seeding neuritic plaques from the distance: a possible role for brainstem neurons in the development of Alzheimer’s disease pathology. Neurodegener Dis 5:250–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Nieuwenhuys R (1999) Structure and organisation of fibre systems. In: Nieuwenhuys R, Ten Donkelaar JH, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer, Berlin, pp 113–157

    Google Scholar 

  • O’Donnell J, Zeppenfeld D, McConnell E et al (2012) Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 37:2496–2512

    Article  PubMed Central  PubMed  Google Scholar 

  • Perani D (2014) FDG-PET and amyloid-PET imaging: the diverging paths. Curr Opin Neurol 27:405–413

    Article  CAS  PubMed  Google Scholar 

  • Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price JL, Morris JC (2004) So what if tangles precede plaques? Neurobiol Aging 25:721–723

    Article  CAS  PubMed  Google Scholar 

  • Rajendran L, Annaert W (2012) Membrane trafficking pathways in Alzheimer’s disease. Traffic 13:759–770

    Article  CAS  PubMed  Google Scholar 

  • Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosa MI, Perucchi J, Medeiros LR et al (2014) Accuracy of cerebrospinal fluid Aβ(1-42) for Alzheimer’s disease diagnosis: a systematic review and meta-analysis. J Alzheimers Dis 40:443–454

    CAS  PubMed  Google Scholar 

  • Rosén C, Zetterberg H (2013) Cerebrospinal fluid biomarkers for pathological processes in Alzheimer’s disease. Curr Opin Psychiatry 26:276–282

    Article  PubMed  Google Scholar 

  • Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationship between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711

    Article  PubMed  Google Scholar 

  • Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447

    Article  CAS  PubMed  Google Scholar 

  • Selkoe D, Mandelkow E, Holtzman D (2012) Deciphering Alzheimer disease. Cold Spring Harb Perspect Med 2:1–8

    Article  Google Scholar 

  • Silverman W, Wisniewski HM, Bobinski M, Wegiel J (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:377–379

    Article  CAS  PubMed  Google Scholar 

  • Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Ann Rev Biochem 75:607–627

    Article  CAS  PubMed  Google Scholar 

  • Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–275

    Article  CAS  PubMed  Google Scholar 

  • Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid (beta)-amyloid 42 and tau proteins as biomarker changes in the brain. Arch Neurol 66:382–389

    PubMed  Google Scholar 

  • Thal DR, Sassin I, Schultz C et al (1999) Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol 58:210–216

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  • Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer’s disease: correlation cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301

    PubMed  Google Scholar 

  • Tolnay M, Probst A (1999) Review: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70:871–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Hedley-Whyte ET et al (1991) Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 30:637–649

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Massey A, Newman TA et al (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weller RO, Biche D, Nicoll JA (2009) Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol 118:87–102

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Struble RG, Hedreen JC et al (1985) Alzheimer’s disease and related dementias: selective involvement of specific neuronal systems. CRC Crit Rev Clin Neurobiol 1:319–339

    CAS  PubMed  Google Scholar 

  • Yamada M, Naiki H (2012) Cerebral amyloid angiopathy. Prog Mol Biol Transl Sci 107:41–78

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braak, H., Del Tredici, K. (2015). Alzheimer-Associated Pathology in the Extracellular Space. In: Neuroanatomy and Pathology of Sporadic Alzheimer's Disease. Advances in Anatomy, Embryology and Cell Biology, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-12679-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12679-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12678-4

  • Online ISBN: 978-3-319-12679-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics