Skip to main content

The Pattern of Cortical Lesions in Preclinical Stages

  • Chapter
  • First Online:
Neuroanatomy and Pathology of Sporadic Alzheimer's Disease

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 215))

Abstract

As the pathological process progresses and secondary to the subcortical lesions described above, abnormal tau aggregates appear for the first time in the cerebral cortex generally in the transentorhinal region. AT8-ir lesions are present in neuronal processes, most probably in terminal portions of axons, and we designate such cases as having “cortical stage 1a” tau pathology (Table 2.1; Figs. 7.1 and 7.2). The predominantly radially aligned thread-like cellular processes are easier to see in unconventionally thick sections (Fig. 7.1a, b). A thin network of finely shaped and weakly AT8-ir neuronal processes (axons) together with more intensely immunostained dots develops. Sometimes, however, it is possible to follow several of the processes over longer distances, and they often end with a droplet-like swelling (Figs. 7.1c, d and 7.2a). All stage 1a cases show the presence of subcortical tau lesions resembling those found in stages a–c (see Sects. 5.1 and 5.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed Z, Cooper J, Murray TK et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127:667–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andreasen N, Minthon L, Vanmechelen E et al (1999) Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 273:5–8

    Article  CAS  PubMed  Google Scholar 

  • Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271

    CAS  PubMed  Google Scholar 

  • Blennow K, Hampel H (2003) Cerebrospinal fluid markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, Zetterberg H, Minthon L et al (2007) Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett 419:18–22

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, Zetterberg H, Fagan AM (2012) Fluid biomarkers in Alzheimer’s disease. Cold Spring Harb Perspect Med 2:a006221

    Article  PubMed Central  PubMed  Google Scholar 

  • Blom ES, Giedraitis V, Zetterberg H et al (2009) Rapid progression from mild cognitive impairment to Alzheimer’s disease in subjects with elevated levels of tau in cerebrospinal fluid and the APOE epsilon4/epsilon4 genotype. Dement Geriatr Cogn Disord 27:458–464

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1979) Spindle-shaped appendages of IIIab-pyramids filled with lipofuscin: a striking pathological change of the senescent human isocortex. Acta Neuropathol 46:197–202

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991a) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1992a) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31

    Article  CAS  PubMed  Google Scholar 

  • Braak E, Braak H (1997a) Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn. Acta Neuropathol 93:323–325

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  • Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714

    Article  CAS  PubMed  Google Scholar 

  • Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Braak E (2003) Spectrum of pathology. In: Petersen RC (ed) Mild cognitive impairment. Aging to Alzheimer’s disease. Oxford University Press, Oxford, pp 149–189

    Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathological process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Zetterberg H, Del Tredici K, Blennow K (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 126:631–641

    Article  CAS  PubMed  Google Scholar 

  • Buchhave P, Minthon L, Zetterberg H et al (2012) Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69:98–106

    Article  CAS  PubMed  Google Scholar 

  • Buerger K, Ewers M, Pirttilä T et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129:3035–3041

    Article  PubMed  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clavaguera F, Akatsu H, Fraser G et al (2013a) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 110:9535–9540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clavaguera F, Lavenir I, Falcon B et al (2013b) “Prion-like” templated misfolding in tauopathies. Brain Pathol 23:342–349

    Article  CAS  PubMed  Google Scholar 

  • Clavaguera F, Grueninger F, Tolnay M (2014) Intercellular transfer of tau aggregates and spreading of tau pathology: implications for therapeutic strategies. Neuropharmacology 76(Pt A):9–15

    Article  CAS  PubMed  Google Scholar 

  • Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer’s disease. Neurobiol Dis 35:128–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Calignon A, Polydoro M, Suarez-Calvet M et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed Central  PubMed  Google Scholar 

  • Dugger BN, Hidalgo JA, Chiarolanza G et al (2013) The distribution of phosphorylated tau in spinal cords of Alzheimer’s disease and non-demented individuals. J Alzheimer Dis 34:529–536

    CAS  Google Scholar 

  • Dujardin S, Lécolle K, Caillierez R, Bégard S et al (2014) Neuron-to-neuron wild-type tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Duyckaerts C (2013) Neurodegenerative lesions: seeding and spreading. Rev Neurol 169:825–833

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I (2012) Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol 97:38–51

    Article  PubMed  Google Scholar 

  • Fodero-Tavoletti MT, Okamura N, Furumoto S et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134:1089–1100

    Article  PubMed  Google Scholar 

  • Fodero-Tavoletti MT, Furumoto S, Taylor L et al (2014) Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther 6:11–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11:155–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325

    Article  CAS  PubMed  Google Scholar 

  • Guo JL, Lee VMY (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goedert M, Falcon B, Clavaguera F et al (2014) Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep 14:495

    Article  PubMed  Google Scholar 

  • Guo JL, Lee VMY (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:1–9

    Article  Google Scholar 

  • Hall GF, Saman S (2012) Death or secretion? The demise of a plausible assumption about CSF-tau in Alzheimer disease? Commun Integr Biol 5:1–4

    Article  Google Scholar 

  • Hampel H, Frank R, Broich K et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560–574

    Article  CAS  PubMed  Google Scholar 

  • Holmes BB, Furman JL, Mahan TE et al (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA 111:E4376–4385

    Article  CAS  PubMed  Google Scholar 

  • Iba M, Guo JL, McBride JD et al (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer-like tauopathy. J Neurosci 33:1024–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Insausti R, Amaral DG (2012) Hippocampal formation. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Academic Press, San Diego, CA, pp 896–942

    Chapter  Google Scholar 

  • Jack CR Jr (2012) Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 263:344–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Holtzman DM (2013) Biomarker modelling of Alzheimer’s disease. Neuron 80:1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Jensen JR, Cisek K, Funk KE et al (2011) Research towards tau imaging. J Alzheimers Dis 26(Suppl 3):147–157

    PubMed  Google Scholar 

  • Johnson SB, Blum RW, Giedd JN (2009) Adolescent maturity and the brain: the promise and pitfalls of neuroscience research in adolescent health policy. J Adolesc Health 45:216–221

    Article  PubMed Central  PubMed  Google Scholar 

  • Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer’s disease and other neurodegenerative disorders. Ann Neurol 70:532–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman SK, Diamond MI (2013) Prion-like propagation of protein aggregation and related therapeutic strategies. Neurotherapeutics 10:371–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kemper TL (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert ML (ed) Clinical neurology of aging. Oxford University Press, New York, NY, pp 9–52

    Google Scholar 

  • Kovács T, Cairns NJ, Lantos PL (1999) β-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491

    Article  PubMed  Google Scholar 

  • Lee SJ, Desplats P, Sigurdson C et al (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6:702–706

    Article  PubMed  Google Scholar 

  • Lee S, Kim W, Li Z, Hall FG (2012a) Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. Int J Alzheimers Dis 2012, 172837

    PubMed Central  PubMed  Google Scholar 

  • Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maruyama M, Shimada H, Suhara T et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79:1–15

    Article  Google Scholar 

  • Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393

    Article  CAS  PubMed  Google Scholar 

  • Mattsson N, Portelius E, Rolstad S et al (2012) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30:767–778

    CAS  PubMed  Google Scholar 

  • Medina M, Ávila J (2014a) The role of extracellular tau in the spreading of neurofibrillary pathology. Front Cell Neurosci 8:113

    PubMed Central  PubMed  Google Scholar 

  • Medina M, Ávila J (2014b) New perspectives on the role of tau in Alzheimer’s disease. Implication for therapy. Biochem Pharmacol 88:540–547

    Article  CAS  PubMed  Google Scholar 

  • Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64:209–217

    Article  CAS  PubMed  Google Scholar 

  • Okamura N, Furumoto S, Harada R et al (2013) Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54:1420–1427

    Article  CAS  PubMed  Google Scholar 

  • Pearson RCA (1996) Cortical connections and the pathology of Alzheimer’s disease. Neurodegeneration 5:429–434

    Article  CAS  PubMed  Google Scholar 

  • Pearson RCA, Powell TPS (1989) The neuroanatomy of Alzheimer’s disease. Rev Neurosci 2:101–122

    Article  CAS  PubMed  Google Scholar 

  • Perani D (2014) FDG-PET and amyloid-PET imaging: the diverging paths. Curr Opin Neurol 27:405–413

    Article  CAS  PubMed  Google Scholar 

  • Prusiner S (2012) Cell biology. A unifying role for prions in neurodegenerative diseases. Science 336:1511–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purpura DP, Baker HJ (1978) Meganeurites and other aberrant processes of neurons in feline GM1-gangliosidosis: a Golgi study. Brain Res 143:13–26

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI (1988) Brain evolution and Alzheimer’s disease. Rev Neurol (Paris) 144:79–90

    CAS  Google Scholar 

  • Rapoport SI (1989) Hypothesis: Alzheimer’s disease is a phylogenetic disease. Med Hypotheses 29:147–150

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI (1990) Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res Rev 15:267–294

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI (1999) How did the human brain evolve? A proposal based on new evidence from in vivo imaging during attention and ideation. Brain Res Bull 50:149–165

    Article  CAS  PubMed  Google Scholar 

  • Sämgård K, Zetterberg H, Blennow K et al (2010) Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 25:403–410

    Article  PubMed  Google Scholar 

  • Sanders DW, Kaufmann SW, DeVos SL et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Weiner BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398

    Article  CAS  PubMed  Google Scholar 

  • Tago T, Furumoto S, Okamura N et al (2014) Synthesis and preliminary evaluation of 2-arylhydroxyquinoline derivatives for tau imaging. J Label Compd Radiopharm 57:18–24

    Article  CAS  Google Scholar 

  • Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid (beta)-amyloid 42 and tau proteins as biomarker changes in the brain. Arch Neurol 66:382–389

    PubMed  Google Scholar 

  • Togo T, Akiyama H, Iseki E et al (2004) Immunohistochemical study of tau accumulation in early stages of Alzheimer-type neurofibrillary lesions. Acta Neuropathol 107:504–508

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Lee VMY (2000) “Fatal Attractions” of proteins: a comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann NY Acad Sci 924:62–67

    Article  CAS  PubMed  Google Scholar 

  • Van Ba AT, Imberdis T, Perrier V (2013) From prion disease to prion-like propagation mechanisms of neurodegenerative diseases. Int J Cell Biol 2013, 975832

    Google Scholar 

  • Vanderstichele HM, Shaw L, Vandijck M et al (2013) Alzheimer disease biomarker testing in cerebrospinal fluid: a method to harmonize assay platforms in the absence of an absolute reference standard. Clin Chem 59:710–712

    Article  CAS  PubMed  Google Scholar 

  • Villemagne VL, Furumoto S, Fodero-Tavoletti MT et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:816–826

    Article  CAS  PubMed  Google Scholar 

  • Walker LC, Diamond MI, Duff KE, Hyman BT (2013) Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol 70:304–310

    Article  PubMed  Google Scholar 

  • Zetterberg H, Pedersen M, Lind K et al (2007) Intra-individual stability of CSF biomarkers for Alzheimer’s disease over two years. J Alzheimers Dis 12:255–260

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braak, H., Del Tredici, K. (2015). The Pattern of Cortical Lesions in Preclinical Stages. In: Neuroanatomy and Pathology of Sporadic Alzheimer's Disease. Advances in Anatomy, Embryology and Cell Biology, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-12679-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12679-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12678-4

  • Online ISBN: 978-3-319-12679-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics