Skip to main content

Basic Organization of Territories That Become Sequentially Involved After Initial Involvement of Brainstem Nuclei with Diffuse Projections

  • Chapter
  • First Online:
  • 3085 Accesses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 215))

Abstract

The cerebral cortex is the overarching superordinate structure of the human CNS. It is not a uniform entity but consists of two fundamentally different types of gray matter, i.e., the expansive and, for the most part, uniformly composed neocortex (Fig. 6.1a, yellow, light and deep orange, light and deep blue shading) and a small and heterogeneous allocortex (Fig. 6.1a, red shading). A transition region mediates between the two (Fig. 6.1a, green shading) (Braak 1980; Nieuwenhuys 1994; Amunts and Zilles 2001; Zilles and Amunts 2010). The neocortex is chiefly responsible for processing and planning the interactions with the external world. It receives abundant somatosensory, visual, and auditory data, and it influences, at the same time, somatomotor activity that impinges on the organism’s environment (Fig. 6.1c). The neocortex, which takes up approximately 95 % of the total surface area of the human cerebral cortex, generally shows a six-layered organization, with the exception of a few regional variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alheid GF (2003) Extended amygdala and basal forebrain. Ann NY Acad Sci 985:185–205

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Zilles K (2001) Advances in cytoarchitectonic mapping of the human cerebral cortex. Neuroimaging Clin N Am 11:151–169

    CAS  PubMed  Google Scholar 

  • Amunts K, Kedo O, Kindler M et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol 210:343–352

    Article  CAS  PubMed  Google Scholar 

  • Augustinack JC, Huber KE, Postelnicu GM et al (2012) Entorhinal verrucae geometry is coincident and correlates with Alzheimer’s lesions: a combined neuropathology and high-resolution ex vivo MRI analysis. Acta Neuropathol 123:85–96

    Article  PubMed Central  PubMed  Google Scholar 

  • Bannister AP (2005) Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci Res 53:95–103

    Article  PubMed  Google Scholar 

  • Barbas H (2007) Specialized elements of orbitofrontal cortex in primates. Ann NY Acad Sci 1121:10–32

    Article  PubMed  Google Scholar 

  • Bohus B, Koolhaas JM, Luiten PGM et al (1996) The neurobiology of the central nuleus of the amygdala in relation to neuroendocrine and autonomic outflow. Prog Brain Res 107:447–460

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin, pp 1–147

    Google Scholar 

  • Braak H, Braak E (1991a) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1992a) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1999) Temporal sequence of Alzheimer’s disease-related pathology. In: Peters A, Morrison JH (eds) Cerebral cortex, vol 14, Neurodegenerative and age-related changes in structure and function of the cerebral cortex. Kluwer Academic/Plenum, New York, NY, pp 475–512

    Chapter  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Bohl J (1996) Functional anatomy of human hippocampal formation and related structures. J Child Neurol 11:265–275

    Article  CAS  PubMed  Google Scholar 

  • Bzdok D, Laird AR, Zilles K et al (2013) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp 34:3247–3266

    Article  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • Ding SL, van Hoesen GW (2010) Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359–1379

    Article  PubMed  Google Scholar 

  • Gloor P (1997) The temporal lobe and limbic system. Oxford University Press, New York, NY, pp 1–865

    Google Scholar 

  • Groenewegen HJ, Trimble M (2007) The ventral striatum as an interface between the limbic and motor systems. CNS Spectr 12:887–892

    PubMed  Google Scholar 

  • Haber SN, Gdowski MJ (2004) The basal ganglia. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, CA, pp 677–738

    Google Scholar 

  • Hanke J (1997) Sulcal pattern of the anterior parahippocampal gyrus in the human adult. Ann Anat 179:335–339

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147

    Article  PubMed  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Záborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, CA, pp 1306–1325

    Chapter  Google Scholar 

  • Insausti R, Amaral DG (2012) Hippocampal formation. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Academic Press, San Diego, CA, pp 896–942

    Chapter  Google Scholar 

  • Kalus P, Braak H, Braak BJ (1989) The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes. Brain Res 494:198–203

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol 190:307–337

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (2004) The frontal cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, CA, pp 951–974

    Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Kabani HJ, Lerch JP et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Schacter DL (2002) Neuropsychology of memory. The Guilford, New York, NY

    Google Scholar 

  • Stephan H (1983) Evolutionary trends in limbic structures. Neurosci Biobehav Rev 7:367–374

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (2004) Functional neuroanatomy of the medial temporal lobe memory system. Cortex 40:220–222

    Article  PubMed  Google Scholar 

  • Taylor KI, Probst A (2008) Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiol Aging 29:1591–1596

    Article  PubMed  Google Scholar 

  • van der Knaap MS, Valk J, Bakker CJ et al (1991) Myelination as an expression of the functional maturity of the brain. Dev Med Child Neurol 33:849–857

    Article  PubMed  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:277–462

    Google Scholar 

  • Witter MP (1993) Organization of the hippocampal-entorhinal system: a review of current anatomical data. Hippocampus 3 Spec No:33–44

    Google Scholar 

  • Yilmazer-Hanke DM (2012) Amygdala. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Academic Press, San Diego, CA, pp 759–835

    Chapter  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map – conception and fate. Nat Rev Neurosci 11:139–145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braak, H., Del Tredici, K. (2015). Basic Organization of Territories That Become Sequentially Involved After Initial Involvement of Brainstem Nuclei with Diffuse Projections. In: Neuroanatomy and Pathology of Sporadic Alzheimer's Disease. Advances in Anatomy, Embryology and Cell Biology, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-12679-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12679-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12678-4

  • Online ISBN: 978-3-319-12679-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics