Skip to main content

Microtubules and the Protein Tau

  • Chapter
  • First Online:
Neuroanatomy and Pathology of Sporadic Alzheimer's Disease

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 215))

  • 3145 Accesses

Abstract

The protein tau is central to the pathological process underlying sporadic AD. It is chiefly a neuronal protein and is produced in all portions of the nervous system (CNS, PNS, ENS) (Trojanowski et al. 1989). In immature nerve cells, tau is distributed diffusely throughout the entire cell, but during cell maturation it converts into a primarily axonal protein. Tau is born in the cell soma’s rough endoplasmatic reticulum, it clears all cellular checkpoints for quality control, and, in this fully functional state, is then transferred to the axonal compartment (Lee et al. 2001; Scholz and Mandelkow 2014). In healthy nerve cells, the protein promotes self-assembly of axonal microtubules and stabilizes them (Fig. 4.1a). Together with motor proteins, microtubules are required for anterograde and retrograde transport of substances within the axon. To a lesser extent, the protein is also present in neuronal somata, dendritic processes, astrocytes, and oligodendrocytes. However, in contrast to the situation in axons, the microtubules in the somatodendritic compartment are mainly stabilized by other microtubule-associated proteins (Mandelkow and Mandelkow 1998, 2012; Binder et al. 2004; von Bergen et al. 2005; Ávila 2006; Goedert et al. 2006; Alonso et al. 2008; Iqbal et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alafuzoff I, Pikkairainen M, Al-Sarraj S et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. J Neuropathol Exp Neurol 65:740–757

    Article  CAS  PubMed  Google Scholar 

  • Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5:375–384

    Article  CAS  PubMed  Google Scholar 

  • Arendt T (2004) Neurodegeneration and plasticity. Int J Dev Neurosci 22:507–514

    Article  CAS  PubMed  Google Scholar 

  • Ávila J (2006) Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett 580:2922–2927

    Article  PubMed  Google Scholar 

  • Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  • Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2004) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739:216–223

    Article  Google Scholar 

  • Buée L, Bussiere T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  • de Silva R, Lashley T, Gibb G et al (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 29:288–302

    Article  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins from Alzheimer paired helical filaments: abnormal phosphorylation of all six isoforms. Neuron 8:159–168

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Trojanowski JQ, Lee VMY (1997) The neurofibrillary pathology of Alzheimer’s disease. In: Rosenberg RN (ed) The molecular and genetic basis of neurological disease, 2nd edn. Butterworth-Heinemann, Boston, MA, pp 613–627

    Google Scholar 

  • Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9(Suppl):195–207

    CAS  PubMed  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolarova M, Garcia-Sierra F, Bartos A et al (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimer Dis 2012, 731526

    Google Scholar 

  • Kopeikina KJ, Hyman BT, Spires-Jones TL (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Transl Neurosci 3:223–233

    Article  PubMed Central  PubMed  Google Scholar 

  • Kovacech B, Skrabana R, Novak M (2010) Transition of tau protein from disordered to misordered in Alzheimer’s disease. Neurodegener Dis 7:24–27

    Article  CAS  PubMed  Google Scholar 

  • Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegeneration and tauopathies. Annu Rev Neurol 24:1121–1159

    Article  CAS  Google Scholar 

  • Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427

    Article  CAS  PubMed  Google Scholar 

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed Central  PubMed  Google Scholar 

  • Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mercken M, Vandermeeren M, Lübke U et al (1992) Monoclonal antibodies with selective specifity for Alzheimer tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol 84:265–272

    Article  CAS  PubMed  Google Scholar 

  • Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niblock M, Gallo JM (2012) Tau alternative splicing in familial and sporadic tauopathies. Biochem Soc Trans 40:677–680

    Article  CAS  PubMed  Google Scholar 

  • Pikkarainen M, Martikainen P, Alafuzoff I (2010) The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J Neuropathol Appl Neurol 69:40–52

    Article  CAS  Google Scholar 

  • Run X, Liang Z, Zhang L et al (2009) Anesthesia induces phosphorylation of tau. J Alzheimer Dis 16:619–629

    CAS  Google Scholar 

  • Scholz T, Mandelkow E (2014) Transport and diffusion of tau in neurons. Cell Mol Life Sci 71:3139–3150

    Article  CAS  PubMed  Google Scholar 

  • Seitz DP, Reimer CL, Siddiqui N (2012) A review of epidemiological evidence for general anaesthesia as a risk factor for Alzheimer’s disease. Prog Neuropsychoüharmacol Biol Psychiatry 47:122–127

    Article  Google Scholar 

  • Tolnay M, Probst A (1999) Review: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Lee VMY (2000) “Fatal Attractions” of proteins: a comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann NY Acad Sci 924:62–67

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Schuck T, Schmidt ML, Lee VM (1989) Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37:209–215

    Article  CAS  PubMed  Google Scholar 

  • Uchihara T, Nakamura A, Shibuya K, Yagishita S (2011) Specific detection of pathological three-repeat tau after pretreatment with potassium permanganate and oxalic acid in PSP/CBD brains. Brain Pathol 21:180–188

    Article  CAS  PubMed  Google Scholar 

  • Uchihara T, Hara M, Nakamura A, Hirokawa K (2012) Tangle evolution linked to differential 3- and 4-repeat tau isoform deposition: a double immunofluorolabeling study using two monoclonal antibodies. Histochem Cell Biol 137:261–267

    Article  CAS  PubMed  Google Scholar 

  • von Bergen M, Barghorn S, Biernat J et al (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739:158–166

    Article  Google Scholar 

  • Whittington RA, Bretteville A, Dickler MF, Planel E (2013) Anesthesia and tau pathology. Prog Neuro-Psychopharmacol Biol Psychiatry 47:147–155

    Article  CAS  Google Scholar 

  • Yoshida M (2006) Cellular tau pathology and immunohistochemical study of tau isoforms in sporadic tauopathies. Neuropathology 26:457–470

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braak, H., Del Tredici, K. (2015). Microtubules and the Protein Tau. In: Neuroanatomy and Pathology of Sporadic Alzheimer's Disease. Advances in Anatomy, Embryology and Cell Biology, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-12679-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12679-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12678-4

  • Online ISBN: 978-3-319-12679-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics