Advertisement

Takagi–van der Waerden-Type Functions II

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Summary

In this chapter, using more developed tools, we extend results stated in Chap.  4

References

  1. [AFS09]
    E. de Amo, J. Fernández-Sánchez, Takagi’s function revisited from an arithmetical point of view. Int. J. Pure Appl. Math. 54, 407–427 (2009)MathSciNetzbMATHGoogle Scholar
  2. [AK12]
    P.C. Allaart, K. Kawamura, The Takagi function: a survey. Real Anal. Exch. 37, 1–54 (2011/2012)Google Scholar
  3. [AK06a]
    F.A. Albiac, N.J. Kalton, in Topics in Banach Space Theory. Graduate Texts in Mathematics (Springer, New York, 2006)Google Scholar
  4. [AK06b]
    P.C. Allaart, K. Kawamura, Extreme values of some continuous nowhere differentiable functions. Math. Proc. Camb. Philos. Soc. 140, 269–295 (2006)MathSciNetCrossRefGoogle Scholar
  5. [AK10]
    P.C. Allaart, K. Kawamura, The improper infinite derivatives of Takagi’s nowhere-differentiable function. J. Math. Anal. Appl. 372, 656–665 (2010)MathSciNetCrossRefGoogle Scholar
  6. [All13]
    P.C. Allaart, Level sets of signed Takagi functions. arXiv:1209.6120v2 (2013)MathSciNetCrossRefGoogle Scholar
  7. [Als81]
    J. Alsina, The Peano curve of Schoenberg is nowhere differentiable. J. Approx. Theory 33, 28–42 (1981)MathSciNetCrossRefGoogle Scholar
  8. [Amp06]
    A.M. Ampère, Recherches sur quelques points de la théorie des fonctions dérivées qui condiusent à une nouvelle démonstration de la série de Taylor, et à l’expression finie des termes qu’on néglige lorsqu’on arrête cette série à un terme quelconque. J. École Polytech. 6, 148–181 (1806)Google Scholar
  9. [And87]
    D. André, Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris 105, 436–437 (1887)zbMATHGoogle Scholar
  10. [Ani93]
    V. Anisiu, Porosity and continuous, nowhere differentiable functions. Ann. Fac. Sci. Toulouse 2, 5–14 (1993)MathSciNetCrossRefGoogle Scholar
  11. [BA36]
    E.G. Begle, W.L. Ayres, On Hildebrandt’s example of a function without a finite derivative. Am. Math. Mon. 43, 294–296 (1936)CrossRefGoogle Scholar
  12. [Bab84]
    Y. Baba, On maxima of Takagi–van der Waerden functions. Proc. Am. Math. Soc. 91, 373–376 (1984)MathSciNetCrossRefGoogle Scholar
  13. [Ban22]
    S. Banach, Sur les fonctions dérivées des fonctions mesurables. Fundam. Math. 3, 128–132 (1922)CrossRefGoogle Scholar
  14. [Ban31]
    S. Banach, Über die bairesche Kategorie gewisser Funktionenmengen. Stud. Math. 3, 174–179 (1931)CrossRefGoogle Scholar
  15. [BB05]
    B. Bailland, H. Bourget, Correspondence d’Hermite et de Stieltjes, vol. 2 (Gauthier–Villas, Paris, 1905)Google Scholar
  16. [BD92]
    A. Baouche, S. Dubuc, La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992)MathSciNetzbMATHGoogle Scholar
  17. [BD94]
    A. Baouche, S. Dubuc, A unified approach for nondifferentiable functions. J. Math. Anal. Appl. 182, 134–142 (1994)MathSciNetCrossRefGoogle Scholar
  18. [BE81]
    B.C. Berndt, R.J. Evans, The determination of Gauss sums. Bull. Am. Math. Soc. 5, 107–129 (1981)MathSciNetCrossRefGoogle Scholar
  19. [Beh49]
    F.A. Behrend, Some remarks on the construction of continuous non-differentiable functions. Proc. Lond. Math. Soc. 50, 463–481 (1949)MathSciNetzbMATHGoogle Scholar
  20. [Bel71]
    A.S. Belov, Everywhere divergent trigonometric series (Russian). Mat. Sb. (N.S.) 85(127), 224–237 (1971)Google Scholar
  21. [Bel73]
    A.S. Belov, A study of certain trigonometric series (Russian). Mat. Zametki 13, 481–492 (1973)MathSciNetGoogle Scholar
  22. [Bel75]
    A.S. Belov, The sum of a lacunary series (Russian). Trudy Moskov. Mat. Obšč 33, 107–153 (1975)MathSciNetzbMATHGoogle Scholar
  23. [Ber03]
    E.I. Berezhnoi, The subspace of \(\mathcal{C}[0,1]\) consisting of functions having finite one-sided derivatives nowhere. Math. Notes 73, 321–327 (2003)MathSciNetCrossRefGoogle Scholar
  24. [Bes24]
    A.S. Besicovitch, An investigation of continuous functions in connection with the question of their differentiability (Russian). Mat. Sb. 31, 529–556 (1924)Google Scholar
  25. [BKY06]
    R. Balasubramanian, S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis II. Publ. Math. Debrecen 69, 1–16 (2006)zbMATHGoogle Scholar
  26. [Boa69]
    P. van Emde Boas, Nowhere differentiable continuous functions. Technical Report, Mathematisch Centrum Amsterdam (1969)zbMATHGoogle Scholar
  27. [Boa10]
    R.P. Boas, in Invitation to Complex Analysis (Second Edition Revised by Harold P. Boas). MAA Textbooks (Mathematical Association of America, Washington, DC, 2010)Google Scholar
  28. [Bob05]
    J. Bobok, On a space of Besicovitch functions. Real Anal. Exch. 30, 173–182 (2005)MathSciNetCrossRefGoogle Scholar
  29. [Bob07]
    J. Bobok, Infinite dimensional Banach space of Besicovitch functions. Real Anal. Exch. 32, 319–333 (2007)MathSciNetCrossRefGoogle Scholar
  30. [Bob14]
    J. Bobok, On spaceability of Besicovitch functions. Preprint (2014)Google Scholar
  31. [Bou04]
    N. Bourbaki, Functions of a Real Variable (Springer, Berlin, 2004)CrossRefGoogle Scholar
  32. [BR74]
    P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)MathSciNetzbMATHGoogle Scholar
  33. [Bro08]
    T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London/New York, 1908)Google Scholar
  34. [Bru84]
    A. Bruckner, Some new simple proofs of old difficult theorems. Real Anal. Exch. 9, 74–75 (1984)zbMATHGoogle Scholar
  35. [Brž49]
    V.F. Bržečka, On Bolzano’s function (Russian). Uspehi Matem. Nauk (N.S.) 2(30), 15–21 (1949)Google Scholar
  36. [Bus52]
    K.A. Bush, Continuous functions without derivatives. Am. Math. Mon. 59, 222–225 (1952)MathSciNetCrossRefGoogle Scholar
  37. [Can69]
    G. Cantor, Über die einfachen Zahlensysteme. Schlömilch Z. XIV, 121–128 (1869)Google Scholar
  38. [Cat03]
    F.S. Cater, Constructing nowhere differentiable functions from convex functions. Real Anal. Exch. 28, 617–621 (2002/03)Google Scholar
  39. [Cat83]
    F.S. Cater, A typical nowhere differentiable function. Canad. Math. Bull. 26, 149–151 (1983)MathSciNetCrossRefGoogle Scholar
  40. [Cat84]
    F.S. Cater, On van der Waerden’s nowhere differentiable function. Am. Math. Mon. 91, 307–308 (1984)MathSciNetCrossRefGoogle Scholar
  41. [Cat86]
    F.S. Cater, An elementary proof of a theorem on unilateral derivatives. Can. Math. Bull. 29, 341–343 (1986)MathSciNetCrossRefGoogle Scholar
  42. [Cat94]
    F.S. Cater, Remark on a function without unilateral derivatives. J. Math. Anal. Appl. 182, 718–721 (1994)MathSciNetCrossRefGoogle Scholar
  43. [Cel90]
    M.Ch. Cellérier, Note sur les principes fondamentaux de l’analyse. Darboux Bull. 14, 142–160 (1890)zbMATHGoogle Scholar
  44. [Dar75]
    G. Darboux, Mémoir sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 4, 57–112 (1875)CrossRefGoogle Scholar
  45. [Dar79]
    G. Darboux, Addition au mémoire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 8, 195–202 (1879)CrossRefGoogle Scholar
  46. [Den15]
    A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues. J. Math. 1, 105–240 (1915)zbMATHGoogle Scholar
  47. [DFK89]
    W.F. Darsow, M.J. Frank, H.-H. Kairies, Errata: “Functional equations for a function of van der Waerden type”. Rad. Mat. 5, 179–180 (1989)MathSciNetzbMATHGoogle Scholar
  48. [Din77]
    U. Dini, Su alcune funzioni che in tutto un intervallo non hanno mai derivata. Annali di Matematica 8, 122–137 (1877)zbMATHGoogle Scholar
  49. [Din92]
    U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)zbMATHGoogle Scholar
  50. [Dol67]
    E.P. Dolženko, Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31, 3–14 (1967)MathSciNetGoogle Scholar
  51. [DS00]
    L. Dirichlet, P.L. Seidel, Die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen (Wilhelm Engelmann, Leipzig, 1900)zbMATHGoogle Scholar
  52. [EG]
    P. Enflo, V.I. Gurariy, On lineability and spaceability of sets in function spaces. PreprintGoogle Scholar
  53. [EGSS14]
    P. Enflo, V.I. Gurariy, J.B. Seoane-Sepúlveda, Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366, 611–625 (2014)MathSciNetCrossRefGoogle Scholar
  54. [EM14]
    A. Eskenazis, K. Makridis, Topological genericity of nowhere differentiable functions in the disc and polydisc algebras. J. Math. Anal. Appl. 420, 435–446 (2014)MathSciNetCrossRefGoogle Scholar
  55. [Esk14]
    A. Eskenazis, Topological genericity of nowhere differentiable functions in the disc algebra. Arch. Math. 103, 85–92 (2014)MathSciNetCrossRefGoogle Scholar
  56. [Eul48]
    L. Euler, Introductio in Analysin in Infinitorum (Appud Marcum-Michaelem Bousquet & Socios, Lausanne, 1748)zbMATHGoogle Scholar
  57. [Fab07]
    G. Faber, Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion. Jahresber. Deutschen Math. Verein. 16, 538–540 (1907)zbMATHGoogle Scholar
  58. [Fab08]
    G. Faber, Über stetige Funktionen. Math. Ann. 66, 81–94 (1908)MathSciNetCrossRefGoogle Scholar
  59. [Fab10]
    G. Faber, Über stetige Funktionen. Math. Ann. 69, 372–443 (1910)MathSciNetCrossRefGoogle Scholar
  60. [FGK99]
    V.P. Fonf, V.I. Gurariy, M.I. Kadets, An infinite-dimensional subspace of \(\mathcal{C}[0,1]\) consisting of nowhere differentiable functions. C. R. Acad. Bulg. 52, 13–16 (1999)MathSciNetzbMATHGoogle Scholar
  61. [Fil69]
    L. Filipczak, Exemple d’une fonction continue privée symétrique partout. Colloq. Math. 20, 249–253 (1969)MathSciNetCrossRefGoogle Scholar
  62. [Gar70]
    K.M. Garg, On a residual set of continuous functions. Czechoslov. Math. J. 20, 537–543 (1970)MathSciNetzbMATHGoogle Scholar
  63. [Ger70]
    J. Gerver, The differentiability of the Riemann function at certain rational multiples of π. Am. J. Math. 92, 33–55 (1970)Google Scholar
  64. [Ger71]
    J. Gerver, More on the differentiability of the Riemann function. Am. J. Math. 93, 33–41 (1971)MathSciNetCrossRefGoogle Scholar
  65. [Gir94]
    R. Girgensohn, Nowhere differentiable solutions of a system of functional equations. Aequationes Math. 47, 89–99 (1994)MathSciNetCrossRefGoogle Scholar
  66. [Gur67]
    V.I. Gurariy, Subspaces of differentiable functions in the space of continuous functions (Russian). Funktsii Funktsional. Anal. Prilozhen 4, 161–121 (1967)Google Scholar
  67. [Gur91]
    V.I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions (Russian). C. R. Acad. Bulg. Sci. 44, 13–16 (1991)MathSciNetGoogle Scholar
  68. [Hah17]
    H. Hahn, Über stetige Funktionen ohne Ableitung. Deutsche Math. Ver. 26, 281–284 (1917)zbMATHGoogle Scholar
  69. [Hai76]
    B. Hailpern, Continuous non-differentiable functions. Pi Mu Epsilon J. 6, 249–260 (1976)MathSciNetzbMATHGoogle Scholar
  70. [Han34]
    E.H. Hanson, A new proof of a theorem of Denjoy, Young, and Saks. Bull. Am. Math. Soc. 40, 691–694 (1934)MathSciNetCrossRefGoogle Scholar
  71. [Har16]
    G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)MathSciNetzbMATHGoogle Scholar
  72. [Hat88a]
    M. Hata, On Weierstrass’s non-differentiable function. C. R. Acad. Sci. Paris 307, 119–123 (1988)MathSciNetzbMATHGoogle Scholar
  73. [Hat88b]
    M. Hata, Singularities of the Weierstrass type functions. J. Anal. Math. 51, 62–90 (1988)MathSciNetCrossRefGoogle Scholar
  74. [Hat91]
    M. Hata, Topological aspects of self-similar sets and singular functions, in Fractal Geometry and Analysis, ed. by J. Bélais, S. Dubuc (Kluwer, Dordrecht, 1991), pp. 255–276CrossRefGoogle Scholar
  75. [Hat94]
    M. Hata, Correction to: “Singularities of the Weierstrass type functions” [J. Anal. Math. 51 (1988)]. J. Anal. Math. 64, 347 (1994)MathSciNetCrossRefGoogle Scholar
  76. [Her79]
    K. Hertz, On functions having no differential quotient (Polish). Diary of the Society of Sciences in Paris 11, 1–24 (1879)Google Scholar
  77. [Hil33]
    T.H. Hildebrandt, A simple continuous function with a finite derivative at no point. Am. Math. Mon. 40, 547–548 (1933)zbMATHGoogle Scholar
  78. [Hob26]
    E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. II (Cambridge University Press, Cambridge, 1926)zbMATHGoogle Scholar
  79. [Hov09]
    R.I. Hovsepyan, On trigonometric series and primitive functions. J. Contemp. Math. Anal. Armen. Acad. Sci. 44, 205–211 (2009)MathSciNetzbMATHGoogle Scholar
  80. [HSY92]
    B.R. Hunt, T. Sauer, J. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27, 217–238 (1992)MathSciNetCrossRefGoogle Scholar
  81. [Hun94]
    B.R. Hunt, The prevalence of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 122, 711–717 (1994)MathSciNetCrossRefGoogle Scholar
  82. [HW41]
    P. Hartman, A. Wintner, On the law of the iterated logarithm. Am. J. Math. 63, 169–176 (1941)CrossRefGoogle Scholar
  83. [HW79]
    G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers (Clarendon, Oxford, 1979)zbMATHGoogle Scholar
  84. [HY84]
    M. Hata, M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math. 1, 183–199 (1984)MathSciNetCrossRefGoogle Scholar
  85. [Ita81]
    S. Itatsu, Differentiability of Riemann’s function. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 492–495 (1981)MathSciNetCrossRefGoogle Scholar
  86. [Jar22]
    V. Jarník, O funkci Bolzanově. Časopis pro pěstování matematiky a fysiky 51, 248–264 (1922)Google Scholar
  87. [Jar33]
    V. Jarník, Über die Differenzierbarkeit stetiger Funktionen. Fundam. Math. 21, 48–58 (1933)CrossRefGoogle Scholar
  88. [Jar34]
    V. Jarník, Sur les nombres dérivés approximatifs. Fundam. Math. 22, 4–16 (1934)CrossRefGoogle Scholar
  89. [Jar81]
    V. Jarník, On Bolzano’s function, in Bolzano and the Foundations of Mathematical Analysis (On the Occasion of the Bicentennial of Bernard Bolzano) (Society of Czechoslovak Mathematicians and Physicists, Prague, 1981), pp. 67–81zbMATHGoogle Scholar
  90. [Joh10]
    J. Johnsen, Simple proofs of nowhere-differentiability for Weierstrass’s function and cases of slow growth. J. Fourier Anal. Appl. 16, 17–33 (2010)MathSciNetCrossRefGoogle Scholar
  91. [JRMFSS13]
    P. Jiménez-Rodriguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, On Weierstrass monsters and lineability. Bull. Belg. Math. Soc. Simon Stevin 20, 577–586 (2013)MathSciNetzbMATHGoogle Scholar
  92. [Kac59]
    M. Kac, in Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs, vol. 12 (Wiley, New York, 1959)Google Scholar
  93. [Kal73]
    P. Kalášek, Note to a paper by V. Petrůva (Czech). Časopis Pěst. Mat. 98, 156–158 (1973)Google Scholar
  94. [Kat91]
    H. Katsuura, Nowhere differentiable functions—an application of contraction mappings. Am. Math. Mon. 98, 411–416 (1991)MathSciNetCrossRefGoogle Scholar
  95. [KDF88]
    H.-H. Kairies, W.F. Darsow, M.J. Frank, Functional equations for a function of van der Waerden type. Rad. Mat. 4, 361–374 (1988)MathSciNetzbMATHGoogle Scholar
  96. [Kie66]
    K. Kiesswetter, Ein einfaches Beispiel einer Funktion, welche überall stetig und nicht differenzierbar ist. Math. Phys. Semesterber. 13, 216–221 (1966)MathSciNetzbMATHGoogle Scholar
  97. [KK96]
    R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line (Springer, Berlin, 1996)zbMATHGoogle Scholar
  98. [Kle02]
    F. Klein, Anwendung der Differential- und Integralrechnung auf Geometrie, eine Revision der Prinzipien (B.G. Teubner, Leipzig, 1902)zbMATHGoogle Scholar
  99. [Kno18]
    K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen. Math. Z. 2, 1–26 (1918)MathSciNetCrossRefGoogle Scholar
  100. [Kob09]
    K. Kobayashi, On the critical case of Okamoto’s continuous non-differentiable functions. Proc. Jpn. Acad. 85, 101–104 (2009)MathSciNetCrossRefGoogle Scholar
  101. [Kôn87]
    N. Kôno, On generalized Takagi functions. Acta Math. Hung. 49, 315–324 (1987)MathSciNetCrossRefGoogle Scholar
  102. [Kos72]
    P. Kostyrko, On the symmetric derivative. Colloq. Math. 25, 265–267 (1972)MathSciNetCrossRefGoogle Scholar
  103. [Kow23]
    G. Kowalewski, Über Bolzanos nichtdifferenzierbare stetige Funktion. Acta Math. 44, 315–319 (1923)MathSciNetCrossRefGoogle Scholar
  104. [Krü07]
    M. Krüppel, On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 62, 41–59 (2007)MathSciNetzbMATHGoogle Scholar
  105. [Krü08]
    M. Krüppel, Takagi’s continuous nowhere differentiable function and binary digital sums. Rostock. Math. Kolloq. 63, 37–54 (2008)MathSciNetzbMATHGoogle Scholar
  106. [Krü10]
    M. Krüppel, On the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 65, 3–13 (2010)zbMATHGoogle Scholar
  107. [KSZ48]
    M. Kac, R. Salem, A. Zygmund, A gap theorem. Trans. Am. Math. Soc. 63, 235–243 (1948)MathSciNetCrossRefGoogle Scholar
  108. [Kuc14]
    A. Kucharski, Math’s beautiful monsters; how a destructive idea paved the way to modern math. Nautilus Q. (11) (2014)Google Scholar
  109. [KV02]
    H.-H. Kairies, P. Volkmann, Ein Vektorraumisomorphismus vom Summentyp. Preprint, University of Karlsruhe (2002)Google Scholar
  110. [KY00]
    S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis. Publ. Math. Debr. 56, 431–449 (2000)zbMATHGoogle Scholar
  111. [Lag12]
    J.C. Lagarias, The Takagi function and its properties, in Functions in Number Theory and Their Probabilistic Aspects (Research Institute of Mathematical Sciences, Kyoto, 2012), pp. 153–189zbMATHGoogle Scholar
  112. [Lan08]
    G. Landsberg, On the differentiability of continuous functions (Über die Differentiierbarkeit stetiger Funktionen). Jahresber. Deutschen Math. Verein. 17, 46–51 (1908)Google Scholar
  113. [Leb40]
    H. Lebesgue, Une fonction continue sans dérivée. Enseign. Math. 38, 212–213 (1939–1940)Google Scholar
  114. [Ler88]
    M. Lerch, Über die Nichtdifferentiirbarkeit gewisser Functionen. J. Math. 103, 126–138 (1888)Google Scholar
  115. [LM40]
    B. Levine, D. Milman, On linear sets in space C consisting of functions of bounded variation (Russian). Comm. Inst. Sci. Math. Mecan. Univ. Kharkoff Soc. Math. Kharkoff IV. Ser. 16, 102–105 (1940)Google Scholar
  116. [LM14]
    D. Li, J. Miao, Generalized Kiesswetter’s functions. Preprint (2014)Google Scholar
  117. [Lut86]
    W. Luther, The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function. J. Approx. Theory 48, 303–321 (1986)MathSciNetCrossRefGoogle Scholar
  118. [Lyc40]
    R.T. Lyche, Une fonction continue sans dérivée. Enseign. Math. 38, 208–211 (1939/1940)Google Scholar
  119. [Mal84]
    J. Malý, Where the continuous functions without unilateral derivatives are typical. Trans. Am. Math. Soc. 283, 169–175 (1984)MathSciNetCrossRefGoogle Scholar
  120. [Mal09]
    L. Maligranda, Karol Hertz (1843–1904) — absolwent Szkoły Głównej Warszawskiej (Polish). Antiquit. Math. 3, 65–87 (2009)Google Scholar
  121. [Mar35]
    J. Marcinkiewicz, Sur les nombres dérivés. Fundam. Math. 24, 305–308 (1935)CrossRefGoogle Scholar
  122. [Mau79]
    R.D. Mauldin, The set of continuous nowhere differentiable functions. Pac. J. Math. 83, 199–205 (1979)MathSciNetCrossRefGoogle Scholar
  123. [Maz31]
    S. Mazurkiewicz, Sur les fonctions non dérivables. Stud. Math. 3, 92–94 (1931)CrossRefGoogle Scholar
  124. [McC53]
    J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)MathSciNetCrossRefGoogle Scholar
  125. [MG84]
    D.P. Minassian, J.W. Gaisser, A simple Weierstrass function. Am. Math. Mon. 91, 254–256 (1984)MathSciNetCrossRefGoogle Scholar
  126. [Mik56]
    M. Mikolás, Construction des familles de fonctions partout continues non dérivables. Acta Sci. Math. 17, 49–62 (1956)MathSciNetzbMATHGoogle Scholar
  127. [Moh80]
    E. Mohr, Wo ist die Riemannsche Funktion \(\sum \limits _{n=1}^{\infty }\frac{\sin n^{2}x} {n^{2}}\) nichtdifferenzierbar? Ann. Mat. Pura Appl. 123, 93–104 (1980)MathSciNetCrossRefGoogle Scholar
  128. [Mor38]
    A.P. Morse, A continuous function with no unilateral derivatives. Trans. Am. Math. Soc. 44, 496–507 (1938)MathSciNetCrossRefGoogle Scholar
  129. [Mor87]
    M. Morayne, On differentiability of Peano type functions. Colloq. Math. 53, 129–132 (1987)MathSciNetCrossRefGoogle Scholar
  130. [Muk34]
    B.N. Mukhopadhyay, On some generalisations of Weierstraß  nondifferentiable functions. Bull. Calcutta M.S. 25, 179–184 (1934)Google Scholar
  131. [Oka05]
    H. Okamoto, A remark on continuous, nowhere differentiable functions. Proc. Jpn. Acad. 81, 47–50 (2005)MathSciNetCrossRefGoogle Scholar
  132. [OMS09]
    K. Oldham, J. Myland, J. Spanier, An Atlas of Functions (Springer, Berlin, 2009)CrossRefGoogle Scholar
  133. [OW07]
    H. Okamoto, M. Wunsch, A geometric construction of continuous, strictly increasing singular functions. Proc. Jpn. Acad. 83, 114–118 (2007)MathSciNetCrossRefGoogle Scholar
  134. [Pas14]
    M. Pasch, Veränderliche und Funktion (B.G. Teubner, Leipzig/Berlin, 1914)zbMATHGoogle Scholar
  135. [Pep28]
    E.D. Pepper, On continuous functions without a derivative. Fundam. Math. 12, 244–253 (1928)CrossRefGoogle Scholar
  136. [Per16]
    J.B. Perrin, Atoms (D. van Nostrand Company, 1916)Google Scholar
  137. [Per27]
    F.W. Perkins, An elementary example of a continuous non-differentiable function. Am. Math. Mon. 34, 476–478 (1927)MathSciNetCrossRefGoogle Scholar
  138. [Per29]
    F.W. Perkins, A note on certain continuous non-differentiable functions. Bull. Am. Math. Soc. 35, 239–247 (1929)MathSciNetCrossRefGoogle Scholar
  139. [Pet20]
    K. Petr, Example of a continuous function without derivative at any point (Czech). Časopis Pěst. Mat. 49, 25–31 (1920)Google Scholar
  140. [Pet58]
    V. Petrův, On the symmetric derivative of continuous functions (Czech). Časopis Pěst. Mat. 83, 336–342 (1958)MathSciNetGoogle Scholar
  141. [Poi99]
    H. Poincaré, La logique et l’intuition dans la sciences mathématique et dans l’enseigment. Enseign. Math. 1, 157–162 (1899)zbMATHGoogle Scholar
  142. [Pom92]
    C. Pommerenke, in Boundary Behaviour of Conformal Maps. Grundlehren Der Mathematischen Wissenschaften, vol. 299 (Springer, Berlin, 1992)Google Scholar
  143. [Por19]
    M.B. Porter, Derivativeless continuous functions. Bull. Am. Math. Soc. 25, 176–180 (1919)MathSciNetCrossRefGoogle Scholar
  144. [PT84]
    P.P. Petrushev, S.L. Troyanski, On the Banach–Mazur theorem on the universality of w[0, 1] (Russian). C. R. Acad. Bulg. Sci. 37, 283–285 (1984)Google Scholar
  145. [PV13]
    M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation. Int. J. Math. Anal. 7, 3155–3167 (2013)MathSciNetCrossRefGoogle Scholar
  146. [Rha57a]
    G. de Rham, Sur quelques courbes définies par des équations fonctionelles. Rend. Sem Mat. Univ. Torino 16, 101–113 (1957)Google Scholar
  147. [Rha57b]
    G. de Rham, Sur un exemple de fonction continue sans dérivée. Enseign. Math. 3, 71–72 (1957)zbMATHGoogle Scholar
  148. [RP95]
    L. Rodriguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 123, 3650–3654 (1995)MathSciNetCrossRefGoogle Scholar
  149. [RS02]
    R. Remmert, G. Schumacher, Funktionentheorie 2. Springer-Lehrbuch (Springer, Berlin/Heidelberg, 2002)zbMATHGoogle Scholar
  150. [Rud74]
    W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1974)zbMATHGoogle Scholar
  151. [Ryc23]
    K. Rychlik, Eine stetige nicht differenzierbare Funktion im Gebiete der Henselschen Zahlen. J. Math. 152, 178–179 (1923)MathSciNetzbMATHGoogle Scholar
  152. [Sag92]
    H. Sagan, An elementary proof that Schoenberg’s space-filling curve is nowhere differentiable. Math. Mag. 65, 125–128 (1992)MathSciNetCrossRefGoogle Scholar
  153. [Sag94]
    H. Sagan, Space-Filling Curves. Universitext (Springer, New York, 1994)CrossRefGoogle Scholar
  154. [Sak24]
    S. Saks, Sur les nombres derivées des fonctions. Fundam. Math. 5, 98–104 (1924)CrossRefGoogle Scholar
  155. [Sak32]
    S. Saks, On the functions of Besicovitch in the space of continuous functions. Fundam. Math. 19, 211–219 (1932)CrossRefGoogle Scholar
  156. [Sch38]
    I.J. Schoenberg, On the Peano curve of Lebesgue. Bull. Am. Math. Soc. 44, 8 (1938)MathSciNetCrossRefGoogle Scholar
  157. [Sie14a]
    W. Sierpiński, An arithmetic example of a continuous non-differentiable function (Polish). Wektor 3, 337–343 (1914)Google Scholar
  158. [Sie14b]
    W. Sierpiński, Sur deux problémes de la théorie des fonctions non dérivables. Bull. Int Acad. Sci. Cracovie 162–182 (1914)Google Scholar
  159. [Sie35]
    W. Sierpiński, Sur une propriété des fonctions quelconques d’une variable reéle. Fundam. Math. 25, 1–4 (1935)MathSciNetCrossRefGoogle Scholar
  160. [Sin27]
    A.N. Singh, On some new types of non-differentiable functions. Ann. Math. 28, 472–476 (1927)MathSciNetCrossRefGoogle Scholar
  161. [Sin28]
    A.N. Singh, On Bolzano’s non-differentiable function. Bull. Acad. Pol. A 1928, 191–200 (1928)zbMATHGoogle Scholar
  162. [Sin30]
    A.N. Singh, Arithmetic non-differentiable functions. Ann. Math. 31, 657–659 (1930)MathSciNetCrossRefGoogle Scholar
  163. [Sin35]
    A.N. Singh, The theory and construction of non-differentiable functions, in Squaring the Circle and Other Monographs. (Lucknow University Studies, Chelsea Publishing Company) (1935)Google Scholar
  164. [Sin41]
    A.N. Singh, On functions without one-sided derivatives. Proc. Benares Math. Soc. 3, 55–69 (1941)MathSciNetGoogle Scholar
  165. [Sin43]
    A.N. Singh, On functions without one-sided derivatives ii. Proc. Benares Math. Soc. 4, 95–108 (1943)MathSciNetzbMATHGoogle Scholar
  166. [Smi72]
    A. Smith, The differentiability of Riemann’s functions. Proc. Am. Math. Soc. 34, 463–468 (1972)MathSciNetzbMATHGoogle Scholar
  167. [Smi83]
    A. Smith, Correction to: “The differentiability of Riemann’s function” [Proc. Am. Math. Soc. 34 (1972)]. Proc. Am. Math. Soc. 89, 567–568 (1983)Google Scholar
  168. [Spu04]
    K.G. Spurrier, Continuous nowhere differentiable functions. Master’s thesis, South Carolina Honors College (2004)Google Scholar
  169. [SS86]
    A. Shidfar, K. Sabetfakhri, On the continuity of van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)zbMATHGoogle Scholar
  170. [Ste99]
    E. Steinitz, Stetigkeit und Differentialquotient. Math. Ann. 52, 58–69 (1899)MathSciNetCrossRefGoogle Scholar
  171. [Sti14]
    T.J. Stieltjes, Quelques remarques à propos des dérivées d’une fonction d’une seule variable, in Œuvres Complètes de Thomas Jan Stieltjes, vol. I (Groningen, P. Noordhoff, 1914), pp. 67–72Google Scholar
  172. [Swi61]
    W.C. Swift, Simple constructions of nondifferentiable functions and space-filling curves. Am. Math. Mon. 68, 653–655 (1961)MathSciNetCrossRefGoogle Scholar
  173. [Tak03]
    T. Takagi, A simple example of the continuous function without derivative. Proc. Phys. Math. Soc. Jpn. 1, 176–177 (1903). See also: The Collected Papers of Teiji Takagi (Springer, New York, 1990), pp. 4–5Google Scholar
  174. [TH]
    A.L. Thomson, J.N. Hagler, Between a parabola and a nowhere differentiable place. PreprintGoogle Scholar
  175. [Thi03]
    J. Thim, Continuous nowhere differentiable functions. Master’s thesis, Luleå University of Technology (2003)Google Scholar
  176. [Vas13]
    N. Vasylenko, Nowhere differentiable Takagi function in problems and applications, in Fifth International Conference on Analytic Number Theory and Spatial Tessellations (2013), pp. 54–55Google Scholar
  177. [Vol1987]
    K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)MathSciNetCrossRefGoogle Scholar
  178. [Vol1989]
    K. Volkert, Zur Differenzierbarkeit stetiger Funktionen — Ampère’s Beweis und seine Folgen. Arch. Hist. Exact Sci. 40, 37–112 (1989)MathSciNetCrossRefGoogle Scholar
  179. [Wae30]
    B.L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Math. Z. 32, 474–475 (1930)MathSciNetCrossRefGoogle Scholar
  180. [Wei86]
    K. Weierstrass, Abhandlungen aus der Funktionenlehre (Julius Springer, Berlin, 1886)zbMATHGoogle Scholar
  181. [Wei95]
    K. Weierstrass, Mathematische Werke (Mayer & Müller, Berlin, 1895)zbMATHGoogle Scholar
  182. [Wei23]
    K. Weierstrass, Briefe von K. Weierstrass an Paul du Bois-Reymond. Acta Math. 39, 199–225 (1923)MathSciNetzbMATHGoogle Scholar
  183. [Wen00]
    L. Wen, A nowhere differentiable continuous function. Am. Math. Mon. 107, 450–453 (2000)MathSciNetCrossRefGoogle Scholar
  184. [Wen01]
    L. Wen, A nowhere differentiable continuous function constructed using Cantor series. Math. Mag. 74, 400–402 (2001)CrossRefGoogle Scholar
  185. [Wen02]
    L. Wen, A nowhere differentiable continuous function constructed by infinite products. Am. Math. Mon. 109, 378–380 (2002)MathSciNetCrossRefGoogle Scholar
  186. [Wie81]
    C. Wiener, Geometrische und analytische Untersuchung der Weierstrassschen Function. J. Reine Angew. Math. 90, 221–252 (1881)MathSciNetzbMATHGoogle Scholar
  187. [Wun52]
    W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion. Elem. der Math. 7, 73–79 (1952)zbMATHGoogle Scholar
  188. [YG04]
    T. Yong, Y. Guangjun, Construction of some Kiesswetter-like functions—the continuous but non-differentiable function define by quinary decimal.Anal. Theory Appl. 20, 58–68 (2004)MathSciNetCrossRefGoogle Scholar
  189. [Yon10]
    T. Yong, Construction and generalization of a class of Kiesswetter-like functions. J. Kunming Univ. Sci. Technol. 35, 104–110 (2010)Google Scholar
  190. [You16a]
    G.C. Young, On infinite derivates. Q. J. Pure Appl. Math. 47, 127–175 (1916)zbMATHGoogle Scholar
  191. [You16b]
    G.C. Young, On the derivates of a function. Lond. M. S. Proc. 15, 360–384 (1916)MathSciNetzbMATHGoogle Scholar
  192. [Zaj87]
    L. Zajiček, Porosity and σ-porosity. Real Anal. Exch. 13, 314–350 (1987)MathSciNetzbMATHGoogle Scholar
  193. [Zaj05]
    L. Zajiček, On σ-porous sets in abstract spaces. Abstr. Appl. Anal. 2005(5), 309–334 (2005)MathSciNetCrossRefGoogle Scholar
  194. [Zyg02]
    A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 2002)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations