Advertisement

Bolzano-Type Functions I

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Summary

The goal of this chapter is to prove basic results related to the nowhere differentiability of Bolzano-type functions. Some more advanced properties will be presented in Chap.  10

References

  1. [Bou04]
    N. Bourbaki, Functions of a Real Variable (Springer, Berlin, 2004)CrossRefGoogle Scholar
  2. [Bus52]
    K.A. Bush, Continuous functions without derivatives. Am. Math. Mon. 59, 222–225 (1952)MathSciNetCrossRefGoogle Scholar
  3. [Hah17]
    H. Hahn, Über stetige Funktionen ohne Ableitung. Deutsche Math. Ver. 26, 281–284 (1917)zbMATHGoogle Scholar
  4. [HW41]
    P. Hartman, A. Wintner, On the law of the iterated logarithm. Am. J. Math. 63, 169–176 (1941)CrossRefGoogle Scholar
  5. [Kat91]
    H. Katsuura, Nowhere differentiable functions—an application of contraction mappings. Am. Math. Mon. 98, 411–416 (1991)MathSciNetCrossRefGoogle Scholar
  6. [Kie66]
    K. Kiesswetter, Ein einfaches Beispiel einer Funktion, welche überall stetig und nicht differenzierbar ist. Math. Phys. Semesterber. 13, 216–221 (1966)MathSciNetzbMATHGoogle Scholar
  7. [Kob09]
    K. Kobayashi, On the critical case of Okamoto’s continuous non-differentiable functions. Proc. Jpn. Acad. 85, 101–104 (2009)MathSciNetCrossRefGoogle Scholar
  8. [LM14]
    D. Li, J. Miao, Generalized Kiesswetter’s functions. Preprint (2014)Google Scholar
  9. [Oka05]
    H. Okamoto, A remark on continuous, nowhere differentiable functions. Proc. Jpn. Acad. 81, 47–50 (2005)MathSciNetCrossRefGoogle Scholar
  10. [OW07]
    H. Okamoto, M. Wunsch, A geometric construction of continuous, strictly increasing singular functions. Proc. Jpn. Acad. 83, 114–118 (2007)MathSciNetCrossRefGoogle Scholar
  11. [Pas14]
    M. Pasch, Veränderliche und Funktion (B.G. Teubner, Leipzig/Berlin, 1914)zbMATHGoogle Scholar
  12. [Per27]
    F.W. Perkins, An elementary example of a continuous non-differentiable function. Am. Math. Mon. 34, 476–478 (1927)MathSciNetCrossRefGoogle Scholar
  13. [Per29]
    F.W. Perkins, A note on certain continuous non-differentiable functions. Bull. Am. Math. Soc. 35, 239–247 (1929)MathSciNetCrossRefGoogle Scholar
  14. [Pet20]
    K. Petr, Example of a continuous function without derivative at any point (Czech). Časopis Pěst. Mat. 49, 25–31 (1920)Google Scholar
  15. [PV13]
    M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation. Int. J. Math. Anal. 7, 3155–3167 (2013)MathSciNetCrossRefGoogle Scholar
  16. [Ryc23]
    K. Rychlik, Eine stetige nicht differenzierbare Funktion im Gebiete der Henselschen Zahlen. J. Math. 152, 178–179 (1923)MathSciNetzbMATHGoogle Scholar
  17. [Sie14a]
    W. Sierpiński, An arithmetic example of a continuous non-differentiable function (Polish). Wektor 3, 337–343 (1914)Google Scholar
  18. [Sie14b]
    W. Sierpiński, Sur deux problémes de la théorie des fonctions non dérivables. Bull. Int Acad. Sci. Cracovie 162–182 (1914)Google Scholar
  19. [Sin27]
    A.N. Singh, On some new types of non-differentiable functions. Ann. Math. 28, 472–476 (1927)MathSciNetCrossRefGoogle Scholar
  20. [Sin28]
    A.N. Singh, On Bolzano’s non-differentiable function. Bull. Acad. Pol. A 1928, 191–200 (1928)zbMATHGoogle Scholar
  21. [Sin30]
    A.N. Singh, Arithmetic non-differentiable functions. Ann. Math. 31, 657–659 (1930)MathSciNetCrossRefGoogle Scholar
  22. [Sin35]
    A.N. Singh, The theory and construction of non-differentiable functions, in Squaring the Circle and Other Monographs. (Lucknow University Studies, Chelsea Publishing Company) (1935)Google Scholar
  23. [Ste99]
    E. Steinitz, Stetigkeit und Differentialquotient. Math. Ann. 52, 58–69 (1899)MathSciNetCrossRefGoogle Scholar
  24. [Swi61]
    W.C. Swift, Simple constructions of nondifferentiable functions and space-filling curves. Am. Math. Mon. 68, 653–655 (1961)MathSciNetCrossRefGoogle Scholar
  25. [Wen00]
    L. Wen, A nowhere differentiable continuous function. Am. Math. Mon. 107, 450–453 (2000)MathSciNetCrossRefGoogle Scholar
  26. [Wen01]
    L. Wen, A nowhere differentiable continuous function constructed using Cantor series. Math. Mag. 74, 400–402 (2001)CrossRefGoogle Scholar
  27. [Wun52]
    W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion. Elem. der Math. 7, 73–79 (1952)zbMATHGoogle Scholar
  28. [YG04]
    T. Yong, Y. Guangjun, Construction of some Kiesswetter-like functions—the continuous but non-differentiable function define by quinary decimal.Anal. Theory Appl. 20, 58–68 (2004)MathSciNetCrossRefGoogle Scholar
  29. [Yon10]
    T. Yong, Construction and generalization of a class of Kiesswetter-like functions. J. Kunming Univ. Sci. Technol. 35, 104–110 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations