Advertisement

Takagi–van der Waerden-Type Functions I

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Summary

The purpose of this chapter is to present basic results related to the nowhere differentiability of the Takagi–van der Waerden function \(x\longmapsto \sum _{n=0}^{\infty }a^{n}\mathop{ \mathrm{dist}}\nolimits (b^{n}x +\theta _{n}, \mathbb{Z})\). The discussion will be continued in Chap.  9

References

  1. [AFS09]
    E. de Amo, J. Fernández-Sánchez, Takagi’s function revisited from an arithmetical point of view. Int. J. Pure Appl. Math. 54, 407–427 (2009)MathSciNetzbMATHGoogle Scholar
  2. [AK12]
    P.C. Allaart, K. Kawamura, The Takagi function: a survey. Real Anal. Exch. 37, 1–54 (2011/2012)Google Scholar
  3. [AK06b]
    P.C. Allaart, K. Kawamura, Extreme values of some continuous nowhere differentiable functions. Math. Proc. Camb. Philos. Soc. 140, 269–295 (2006)MathSciNetCrossRefGoogle Scholar
  4. [AK10]
    P.C. Allaart, K. Kawamura, The improper infinite derivatives of Takagi’s nowhere-differentiable function. J. Math. Anal. Appl. 372, 656–665 (2010)MathSciNetCrossRefGoogle Scholar
  5. [All13]
    P.C. Allaart, Level sets of signed Takagi functions. arXiv:1209.6120v2 (2013)MathSciNetCrossRefGoogle Scholar
  6. [Bab84]
    Y. Baba, On maxima of Takagi–van der Waerden functions. Proc. Am. Math. Soc. 91, 373–376 (1984)MathSciNetCrossRefGoogle Scholar
  7. [BD94]
    A. Baouche, S. Dubuc, A unified approach for nondifferentiable functions. J. Math. Anal. Appl. 182, 134–142 (1994)MathSciNetCrossRefGoogle Scholar
  8. [BKY06]
    R. Balasubramanian, S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis II. Publ. Math. Debrecen 69, 1–16 (2006)zbMATHGoogle Scholar
  9. [Cat03]
    F.S. Cater, Constructing nowhere differentiable functions from convex functions. Real Anal. Exch. 28, 617–621 (2002/03)Google Scholar
  10. [Cat84]
    F.S. Cater, On van der Waerden’s nowhere differentiable function. Am. Math. Mon. 91, 307–308 (1984)MathSciNetCrossRefGoogle Scholar
  11. [Cat94]
    F.S. Cater, Remark on a function without unilateral derivatives. J. Math. Anal. Appl. 182, 718–721 (1994)MathSciNetCrossRefGoogle Scholar
  12. [DFK89]
    W.F. Darsow, M.J. Frank, H.-H. Kairies, Errata: “Functional equations for a function of van der Waerden type”. Rad. Mat. 5, 179–180 (1989)MathSciNetzbMATHGoogle Scholar
  13. [Fab07]
    G. Faber, Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion. Jahresber. Deutschen Math. Verein. 16, 538–540 (1907)zbMATHGoogle Scholar
  14. [Fab08]
    G. Faber, Über stetige Funktionen. Math. Ann. 66, 81–94 (1908)MathSciNetCrossRefGoogle Scholar
  15. [Fab10]
    G. Faber, Über stetige Funktionen. Math. Ann. 69, 372–443 (1910)MathSciNetCrossRefGoogle Scholar
  16. [Hai76]
    B. Hailpern, Continuous non-differentiable functions. Pi Mu Epsilon J. 6, 249–260 (1976)MathSciNetzbMATHGoogle Scholar
  17. [Hat91]
    M. Hata, Topological aspects of self-similar sets and singular functions, in Fractal Geometry and Analysis, ed. by J. Bélais, S. Dubuc (Kluwer, Dordrecht, 1991), pp. 255–276CrossRefGoogle Scholar
  18. [Hil33]
    T.H. Hildebrandt, A simple continuous function with a finite derivative at no point. Am. Math. Mon. 40, 547–548 (1933)zbMATHGoogle Scholar
  19. [HY84]
    M. Hata, M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math. 1, 183–199 (1984)MathSciNetCrossRefGoogle Scholar
  20. [KDF88]
    H.-H. Kairies, W.F. Darsow, M.J. Frank, Functional equations for a function of van der Waerden type. Rad. Mat. 4, 361–374 (1988)MathSciNetzbMATHGoogle Scholar
  21. [Kno18]
    K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen. Math. Z. 2, 1–26 (1918)MathSciNetCrossRefGoogle Scholar
  22. [Kôn87]
    N. Kôno, On generalized Takagi functions. Acta Math. Hung. 49, 315–324 (1987)MathSciNetCrossRefGoogle Scholar
  23. [Krü07]
    M. Krüppel, On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 62, 41–59 (2007)MathSciNetzbMATHGoogle Scholar
  24. [Krü08]
    M. Krüppel, Takagi’s continuous nowhere differentiable function and binary digital sums. Rostock. Math. Kolloq. 63, 37–54 (2008)MathSciNetzbMATHGoogle Scholar
  25. [Krü10]
    M. Krüppel, On the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 65, 3–13 (2010)zbMATHGoogle Scholar
  26. [KV02]
    H.-H. Kairies, P. Volkmann, Ein Vektorraumisomorphismus vom Summentyp. Preprint, University of Karlsruhe (2002)Google Scholar
  27. [KY00]
    S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis. Publ. Math. Debr. 56, 431–449 (2000)zbMATHGoogle Scholar
  28. [Lag12]
    J.C. Lagarias, The Takagi function and its properties, in Functions in Number Theory and Their Probabilistic Aspects (Research Institute of Mathematical Sciences, Kyoto, 2012), pp. 153–189zbMATHGoogle Scholar
  29. [Lan08]
    G. Landsberg, On the differentiability of continuous functions (Über die Differentiierbarkeit stetiger Funktionen). Jahresber. Deutschen Math. Verein. 17, 46–51 (1908)Google Scholar
  30. [Leb40]
    H. Lebesgue, Une fonction continue sans dérivée. Enseign. Math. 38, 212–213 (1939–1940)Google Scholar
  31. [Lyc40]
    R.T. Lyche, Une fonction continue sans dérivée. Enseign. Math. 38, 208–211 (1939/1940)Google Scholar
  32. [McC53]
    J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)MathSciNetCrossRefGoogle Scholar
  33. [MG84]
    D.P. Minassian, J.W. Gaisser, A simple Weierstrass function. Am. Math. Mon. 91, 254–256 (1984)MathSciNetCrossRefGoogle Scholar
  34. [Mik56]
    M. Mikolás, Construction des familles de fonctions partout continues non dérivables. Acta Sci. Math. 17, 49–62 (1956)MathSciNetzbMATHGoogle Scholar
  35. [Rha57a]
    G. de Rham, Sur quelques courbes définies par des équations fonctionelles. Rend. Sem Mat. Univ. Torino 16, 101–113 (1957)Google Scholar
  36. [Rha57b]
    G. de Rham, Sur un exemple de fonction continue sans dérivée. Enseign. Math. 3, 71–72 (1957)zbMATHGoogle Scholar
  37. [Spu04]
    K.G. Spurrier, Continuous nowhere differentiable functions. Master’s thesis, South Carolina Honors College (2004)Google Scholar
  38. [SS86]
    A. Shidfar, K. Sabetfakhri, On the continuity of van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)zbMATHGoogle Scholar
  39. [Tak03]
    T. Takagi, A simple example of the continuous function without derivative. Proc. Phys. Math. Soc. Jpn. 1, 176–177 (1903). See also: The Collected Papers of Teiji Takagi (Springer, New York, 1990), pp. 4–5Google Scholar
  40. [TH]
    A.L. Thomson, J.N. Hagler, Between a parabola and a nowhere differentiable place. PreprintGoogle Scholar
  41. [Vas13]
    N. Vasylenko, Nowhere differentiable Takagi function in problems and applications, in Fifth International Conference on Analytic Number Theory and Spatial Tessellations (2013), pp. 54–55Google Scholar
  42. [Wae30]
    B.L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Math. Z. 32, 474–475 (1930)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations