Riemann Function

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

The aim of this chapter is to discuss the problem of differentiability of the classical Riemann function
$$\displaystyle{\boldsymbol{R}(x):=\sum _{ n=1}^{\infty }\frac{\sin (\pi n^{2}x)} {n^{2}},\quad x \in \mathbb{R}.}$$
To get some feeling of the behavior of \(\boldsymbol{R}\) see Fig. 13.1.

References

  1. [BR74]
    P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)MathSciNetMATHGoogle Scholar
  2. [Ger70]
    J. Gerver, The differentiability of the Riemann function at certain rational multiples of π. Am. J. Math. 92, 33–55 (1970)Google Scholar
  3. [Ger71]
    J.Gerver, More on the differentiability of the Riemann function. Am. J. Math. 93, 33–41 (1971)MathSciNetCrossRefGoogle Scholar
  4. [Har16]
    G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)MathSciNetMATHGoogle Scholar
  5. [Ita81]
    S. Itatsu, Differentiability of Riemann’s function. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 492–495 (1981)MathSciNetCrossRefGoogle Scholar
  6. [Moh80]
    E. Mohr, Wo ist die Riemannsche Funktion \(\sum \limits _{n=1}^{\infty }\frac{\sin n^{2}x} {n^{2}}\) nichtdifferenzierbar? Ann. Mat. Pura Appl. 123, 93–104 (1980)MathSciNetCrossRefGoogle Scholar
  7. [Smi72]
    A. Smith, The differentiability of Riemann’s functions. Proc. Am. Math. Soc. 34, 463–468 (1972)MathSciNetMATHGoogle Scholar
  8. [Smi83]
    A. Smith, Correction to: “The differentiability of Riemann’s function” [Proc. Am. Math. Soc. 34 (1972)]. Proc. Am. Math. Soc. 89, 567–568 (1983)Google Scholar
  9. [Wei95]
    K. Weierstrass, Mathematische Werke (Mayer & Müller, Berlin, 1895)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations