Continuous Nowhere Differentiable Functions pp 203-208 | Cite as
Bolzano-Type Functions II
Chapter
Summary
In this chapter, using more advanced tools, we extend results stated in Chap. 5
References
- [AFS09]E. de Amo, J. Fernández-Sánchez, Takagi’s function revisited from an arithmetical point of view. Int. J. Pure Appl. Math. 54, 407–427 (2009)MathSciNetMATHGoogle Scholar
- [AK12]P.C. Allaart, K. Kawamura, The Takagi function: a survey. Real Anal. Exch. 37, 1–54 (2011/2012)Google Scholar
- [AK06a]F.A. Albiac, N.J. Kalton, in Topics in Banach Space Theory. Graduate Texts in Mathematics (Springer, New York, 2006)Google Scholar
- [AK06b]P.C. Allaart, K. Kawamura, Extreme values of some continuous nowhere differentiable functions. Math. Proc. Camb. Philos. Soc. 140, 269–295 (2006)MathSciNetCrossRefGoogle Scholar
- [AK10]P.C. Allaart, K. Kawamura, The improper infinite derivatives of Takagi’s nowhere-differentiable function. J. Math. Anal. Appl. 372, 656–665 (2010)MathSciNetCrossRefGoogle Scholar
- [All13]P.C. Allaart, Level sets of signed Takagi functions. arXiv:1209.6120v2 (2013)MathSciNetCrossRefGoogle Scholar
- [Als81]J. Alsina, The Peano curve of Schoenberg is nowhere differentiable. J. Approx. Theory 33, 28–42 (1981)MathSciNetCrossRefGoogle Scholar
- [Amp06]A.M. Ampère, Recherches sur quelques points de la théorie des fonctions dérivées qui condiusent à une nouvelle démonstration de la série de Taylor, et à l’expression finie des termes qu’on néglige lorsqu’on arrête cette série à un terme quelconque. J. École Polytech. 6, 148–181 (1806)Google Scholar
- [And87]D. André, Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris 105, 436–437 (1887)MATHGoogle Scholar
- [Ani93]V. Anisiu, Porosity and continuous, nowhere differentiable functions. Ann. Fac. Sci. Toulouse 2, 5–14 (1993)MathSciNetCrossRefGoogle Scholar
- [BA36]E.G. Begle, W.L. Ayres, On Hildebrandt’s example of a function without a finite derivative. Am. Math. Mon. 43, 294–296 (1936)CrossRefGoogle Scholar
- [Bab84]Y. Baba, On maxima of Takagi–van der Waerden functions. Proc. Am. Math. Soc. 91, 373–376 (1984)MathSciNetCrossRefGoogle Scholar
- [Ban22]S. Banach, Sur les fonctions dérivées des fonctions mesurables. Fundam. Math. 3, 128–132 (1922)CrossRefGoogle Scholar
- [Ban31]S. Banach, Über die bairesche Kategorie gewisser Funktionenmengen. Stud. Math. 3, 174–179 (1931)CrossRefGoogle Scholar
- [BB05]B. Bailland, H. Bourget, Correspondence d’Hermite et de Stieltjes, vol. 2 (Gauthier–Villas, Paris, 1905)Google Scholar
- [BD92]A. Baouche, S. Dubuc, La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992)MathSciNetMATHGoogle Scholar
- [BD94]A. Baouche, S. Dubuc, A unified approach for nondifferentiable functions. J. Math. Anal. Appl. 182, 134–142 (1994)MathSciNetCrossRefGoogle Scholar
- [BE81]B.C. Berndt, R.J. Evans, The determination of Gauss sums. Bull. Am. Math. Soc. 5, 107–129 (1981)MathSciNetCrossRefGoogle Scholar
- [Beh49]F.A. Behrend, Some remarks on the construction of continuous non-differentiable functions. Proc. Lond. Math. Soc. 50, 463–481 (1949)MathSciNetMATHGoogle Scholar
- [Bel71]A.S. Belov, Everywhere divergent trigonometric series (Russian). Mat. Sb. (N.S.) 85(127), 224–237 (1971)Google Scholar
- [Bel73]A.S. Belov, A study of certain trigonometric series (Russian). Mat. Zametki 13, 481–492 (1973)MathSciNetGoogle Scholar
- [Bel75]A.S. Belov, The sum of a lacunary series (Russian). Trudy Moskov. Mat. Obšč 33, 107–153 (1975)MathSciNetMATHGoogle Scholar
- [Ber03]E.I. Berezhnoi, The subspace of \(\mathcal{C}[0,1]\) consisting of functions having finite one-sided derivatives nowhere. Math. Notes 73, 321–327 (2003)MathSciNetCrossRefGoogle Scholar
- [Bes24]A.S. Besicovitch, An investigation of continuous functions in connection with the question of their differentiability (Russian). Mat. Sb. 31, 529–556 (1924)Google Scholar
- [BKY06]R. Balasubramanian, S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis II. Publ. Math. Debrecen 69, 1–16 (2006)MATHGoogle Scholar
- [Boa69]P. van Emde Boas, Nowhere differentiable continuous functions. Technical Report, Mathematisch Centrum Amsterdam (1969)MATHGoogle Scholar
- [Boa10]R.P. Boas, in Invitation to Complex Analysis (Second Edition Revised by Harold P. Boas). MAA Textbooks (Mathematical Association of America, Washington, DC, 2010)Google Scholar
- [Bob05]J. Bobok, On a space of Besicovitch functions. Real Anal. Exch. 30, 173–182 (2005)MathSciNetCrossRefGoogle Scholar
- [Bob07]J. Bobok, Infinite dimensional Banach space of Besicovitch functions. Real Anal. Exch. 32, 319–333 (2007)MathSciNetCrossRefGoogle Scholar
- [Bob14]J. Bobok, On spaceability of Besicovitch functions. Preprint (2014)Google Scholar
- [Bou04]N. Bourbaki, Functions of a Real Variable (Springer, Berlin, 2004)CrossRefGoogle Scholar
- [BR74]P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)MathSciNetMATHGoogle Scholar
- [Bro08]T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London/New York, 1908)Google Scholar
- [Bru84]A. Bruckner, Some new simple proofs of old difficult theorems. Real Anal. Exch. 9, 74–75 (1984)MATHGoogle Scholar
- [Brž49]V.F. Bržečka, On Bolzano’s function (Russian). Uspehi Matem. Nauk (N.S.) 2(30), 15–21 (1949)Google Scholar
- [Bus52]K.A. Bush, Continuous functions without derivatives. Am. Math. Mon. 59, 222–225 (1952)MathSciNetCrossRefGoogle Scholar
- [Can69]G. Cantor, Über die einfachen Zahlensysteme. Schlömilch Z. XIV, 121–128 (1869)Google Scholar
- [Cat03]F.S. Cater, Constructing nowhere differentiable functions from convex functions. Real Anal. Exch. 28, 617–621 (2002/03)Google Scholar
- [Cat83]F.S. Cater, A typical nowhere differentiable function. Canad. Math. Bull. 26, 149–151 (1983)MathSciNetCrossRefGoogle Scholar
- [Cat84]F.S. Cater, On van der Waerden’s nowhere differentiable function. Am. Math. Mon. 91, 307–308 (1984)MathSciNetCrossRefGoogle Scholar
- [Cat86]F.S. Cater, An elementary proof of a theorem on unilateral derivatives. Can. Math. Bull. 29, 341–343 (1986)MathSciNetCrossRefGoogle Scholar
- [Cat94]F.S. Cater, Remark on a function without unilateral derivatives. J. Math. Anal. Appl. 182, 718–721 (1994)MathSciNetCrossRefGoogle Scholar
- [Cel90]M.Ch. Cellérier, Note sur les principes fondamentaux de l’analyse. Darboux Bull. 14, 142–160 (1890)MATHGoogle Scholar
- [Dar75]G. Darboux, Mémoir sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 4, 57–112 (1875)CrossRefGoogle Scholar
- [Dar79]G. Darboux, Addition au mémoire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 8, 195–202 (1879)CrossRefGoogle Scholar
- [Den15]A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues. J. Math. 1, 105–240 (1915)MATHGoogle Scholar
- [DFK89]W.F. Darsow, M.J. Frank, H.-H. Kairies, Errata: “Functional equations for a function of van der Waerden type”. Rad. Mat. 5, 179–180 (1989)MathSciNetMATHGoogle Scholar
- [Din77]U. Dini, Su alcune funzioni che in tutto un intervallo non hanno mai derivata. Annali di Matematica 8, 122–137 (1877)MATHGoogle Scholar
- [Din92]U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)MATHGoogle Scholar
- [Dol67]E.P. Dolženko, Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31, 3–14 (1967)MathSciNetGoogle Scholar
- [DS00]L. Dirichlet, P.L. Seidel, Die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen (Wilhelm Engelmann, Leipzig, 1900)MATHGoogle Scholar
- [EG]P. Enflo, V.I. Gurariy, On lineability and spaceability of sets in function spaces. PreprintGoogle Scholar
- [EGSS14]P. Enflo, V.I. Gurariy, J.B. Seoane-Sepúlveda, Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366, 611–625 (2014)MathSciNetCrossRefGoogle Scholar
- [EM14]A. Eskenazis, K. Makridis, Topological genericity of nowhere differentiable functions in the disc and polydisc algebras. J. Math. Anal. Appl. 420, 435–446 (2014)MathSciNetCrossRefGoogle Scholar
- [Esk14]A. Eskenazis, Topological genericity of nowhere differentiable functions in the disc algebra. Arch. Math. 103, 85–92 (2014)MathSciNetCrossRefGoogle Scholar
- [Eul48]L. Euler, Introductio in Analysin in Infinitorum (Appud Marcum-Michaelem Bousquet & Socios, Lausanne, 1748)MATHGoogle Scholar
- [Fab07]G. Faber, Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion. Jahresber. Deutschen Math. Verein. 16, 538–540 (1907)MATHGoogle Scholar
- [Fab08]G. Faber, Über stetige Funktionen. Math. Ann. 66, 81–94 (1908)MathSciNetCrossRefGoogle Scholar
- [Fab10]G. Faber, Über stetige Funktionen. Math. Ann. 69, 372–443 (1910)MathSciNetCrossRefGoogle Scholar
- [FGK99]V.P. Fonf, V.I. Gurariy, M.I. Kadets, An infinite-dimensional subspace of \(\mathcal{C}[0,1]\) consisting of nowhere differentiable functions. C. R. Acad. Bulg. 52, 13–16 (1999)MathSciNetMATHGoogle Scholar
- [Fil69]L. Filipczak, Exemple d’une fonction continue privée symétrique partout. Colloq. Math. 20, 249–253 (1969)MathSciNetCrossRefGoogle Scholar
- [Gar70]K.M. Garg, On a residual set of continuous functions. Czechoslov. Math. J. 20, 537–543 (1970)MathSciNetMATHGoogle Scholar
- [Ger70]J. Gerver, The differentiability of the Riemann function at certain rational multiples of π. Am. J. Math. 92, 33–55 (1970)Google Scholar
- [Ger71]J. Gerver, More on the differentiability of the Riemann function. Am. J. Math. 93, 33–41 (1971)MathSciNetCrossRefGoogle Scholar
- [Gir94]R. Girgensohn, Nowhere differentiable solutions of a system of functional equations. Aequationes Math. 47, 89–99 (1994)MathSciNetCrossRefGoogle Scholar
- [Gur67]V.I. Gurariy, Subspaces of differentiable functions in the space of continuous functions (Russian). Funktsii Funktsional. Anal. Prilozhen 4, 161–121 (1967)Google Scholar
- [Gur91]V.I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions (Russian). C. R. Acad. Bulg. Sci. 44, 13–16 (1991)MathSciNetGoogle Scholar
- [Hah17]H. Hahn, Über stetige Funktionen ohne Ableitung. Deutsche Math. Ver. 26, 281–284 (1917)MATHGoogle Scholar
- [Hai76]B. Hailpern, Continuous non-differentiable functions. Pi Mu Epsilon J. 6, 249–260 (1976)MathSciNetMATHGoogle Scholar
- [Han34]E.H. Hanson, A new proof of a theorem of Denjoy, Young, and Saks. Bull. Am. Math. Soc. 40, 691–694 (1934)MathSciNetCrossRefGoogle Scholar
- [Har16]G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)MathSciNetMATHGoogle Scholar
- [Hat88a]M. Hata, On Weierstrass’s non-differentiable function. C. R. Acad. Sci. Paris 307, 119–123 (1988)MathSciNetMATHGoogle Scholar
- [Hat88b]M. Hata, Singularities of the Weierstrass type functions. J. Anal. Math. 51, 62–90 (1988)MathSciNetCrossRefGoogle Scholar
- [Hat91]M. Hata, Topological aspects of self-similar sets and singular functions, in Fractal Geometry and Analysis, ed. by J. Bélais, S. Dubuc (Kluwer, Dordrecht, 1991), pp. 255–276CrossRefGoogle Scholar
- [Hat94]M. Hata, Correction to: “Singularities of the Weierstrass type functions” [J. Anal. Math. 51 (1988)]. J. Anal. Math. 64, 347 (1994)MathSciNetCrossRefGoogle Scholar
- [Her79]K. Hertz, On functions having no differential quotient (Polish). Diary of the Society of Sciences in Paris 11, 1–24 (1879)Google Scholar
- [Hil33]T.H. Hildebrandt, A simple continuous function with a finite derivative at no point. Am. Math. Mon. 40, 547–548 (1933)MATHGoogle Scholar
- [Hob26]E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. II (Cambridge University Press, Cambridge, 1926)MATHGoogle Scholar
- [Hov09]R.I. Hovsepyan, On trigonometric series and primitive functions. J. Contemp. Math. Anal. Armen. Acad. Sci. 44, 205–211 (2009)MathSciNetMATHGoogle Scholar
- [HSY92]B.R. Hunt, T. Sauer, J. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27, 217–238 (1992)MathSciNetCrossRefGoogle Scholar
- [Hun94]B.R. Hunt, The prevalence of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 122, 711–717 (1994)MathSciNetCrossRefGoogle Scholar
- [HW41]P. Hartman, A. Wintner, On the law of the iterated logarithm. Am. J. Math. 63, 169–176 (1941)CrossRefGoogle Scholar
- [HW79]G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers (Clarendon, Oxford, 1979)MATHGoogle Scholar
- [HY84]M. Hata, M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math. 1, 183–199 (1984)MathSciNetCrossRefGoogle Scholar
- [Ita81]S. Itatsu, Differentiability of Riemann’s function. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 492–495 (1981)MathSciNetCrossRefGoogle Scholar
- [Jar22]V. Jarník, O funkci Bolzanově. Časopis pro pěstování matematiky a fysiky 51, 248–264 (1922)Google Scholar
- [Jar33]V. Jarník, Über die Differenzierbarkeit stetiger Funktionen. Fundam. Math. 21, 48–58 (1933)CrossRefGoogle Scholar
- [Jar34]V. Jarník, Sur les nombres dérivés approximatifs. Fundam. Math. 22, 4–16 (1934)CrossRefGoogle Scholar
- [Jar81]V. Jarník, On Bolzano’s function, in Bolzano and the Foundations of Mathematical Analysis (On the Occasion of the Bicentennial of Bernard Bolzano) (Society of Czechoslovak Mathematicians and Physicists, Prague, 1981), pp. 67–81MATHGoogle Scholar
- [Joh10]J. Johnsen, Simple proofs of nowhere-differentiability for Weierstrass’s function and cases of slow growth. J. Fourier Anal. Appl. 16, 17–33 (2010)MathSciNetCrossRefGoogle Scholar
- [JRMFSS13]P. Jiménez-Rodriguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, On Weierstrass monsters and lineability. Bull. Belg. Math. Soc. Simon Stevin 20, 577–586 (2013)MathSciNetMATHGoogle Scholar
- [Kac59]M. Kac, in Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs, vol. 12 (Wiley, New York, 1959)Google Scholar
- [Kal73]P. Kalášek, Note to a paper by V. Petrůva (Czech). Časopis Pěst. Mat. 98, 156–158 (1973)Google Scholar
- [Kat91]H. Katsuura, Nowhere differentiable functions—an application of contraction mappings. Am. Math. Mon. 98, 411–416 (1991)MathSciNetCrossRefGoogle Scholar
- [KDF88]H.-H. Kairies, W.F. Darsow, M.J. Frank, Functional equations for a function of van der Waerden type. Rad. Mat. 4, 361–374 (1988)MathSciNetMATHGoogle Scholar
- [Kie66]K. Kiesswetter, Ein einfaches Beispiel einer Funktion, welche überall stetig und nicht differenzierbar ist. Math. Phys. Semesterber. 13, 216–221 (1966)MathSciNetMATHGoogle Scholar
- [KK96]R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line (Springer, Berlin, 1996)MATHGoogle Scholar
- [Kle02]F. Klein, Anwendung der Differential- und Integralrechnung auf Geometrie, eine Revision der Prinzipien (B.G. Teubner, Leipzig, 1902)MATHGoogle Scholar
- [Kno18]K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen. Math. Z. 2, 1–26 (1918)MathSciNetCrossRefGoogle Scholar
- [Kob09]K. Kobayashi, On the critical case of Okamoto’s continuous non-differentiable functions. Proc. Jpn. Acad. 85, 101–104 (2009)MathSciNetCrossRefGoogle Scholar
- [Kôn87]N. Kôno, On generalized Takagi functions. Acta Math. Hung. 49, 315–324 (1987)MathSciNetCrossRefGoogle Scholar
- [Kos72]P. Kostyrko, On the symmetric derivative. Colloq. Math. 25, 265–267 (1972)MathSciNetCrossRefGoogle Scholar
- [Kow23]G. Kowalewski, Über Bolzanos nichtdifferenzierbare stetige Funktion. Acta Math. 44, 315–319 (1923)MathSciNetCrossRefGoogle Scholar
- [Krü07]M. Krüppel, On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 62, 41–59 (2007)MathSciNetMATHGoogle Scholar
- [Krü08]M. Krüppel, Takagi’s continuous nowhere differentiable function and binary digital sums. Rostock. Math. Kolloq. 63, 37–54 (2008)MathSciNetMATHGoogle Scholar
- [Krü10]M. Krüppel, On the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 65, 3–13 (2010)MATHGoogle Scholar
- [KSZ48]M. Kac, R. Salem, A. Zygmund, A gap theorem. Trans. Am. Math. Soc. 63, 235–243 (1948)MathSciNetCrossRefGoogle Scholar
- [Kuc14]A. Kucharski, Math’s beautiful monsters; how a destructive idea paved the way to modern math. Nautilus Q. (11) (2014)Google Scholar
- [KV02]H.-H. Kairies, P. Volkmann, Ein Vektorraumisomorphismus vom Summentyp. Preprint, University of Karlsruhe (2002)Google Scholar
- [KY00]S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis. Publ. Math. Debr. 56, 431–449 (2000)MATHGoogle Scholar
- [Lag12]J.C. Lagarias, The Takagi function and its properties, in Functions in Number Theory and Their Probabilistic Aspects (Research Institute of Mathematical Sciences, Kyoto, 2012), pp. 153–189MATHGoogle Scholar
- [Lan08]G. Landsberg, On the differentiability of continuous functions (Über die Differentiierbarkeit stetiger Funktionen). Jahresber. Deutschen Math. Verein. 17, 46–51 (1908)Google Scholar
- [Leb40]H. Lebesgue, Une fonction continue sans dérivée. Enseign. Math. 38, 212–213 (1939–1940)Google Scholar
- [Ler88]M. Lerch, Über die Nichtdifferentiirbarkeit gewisser Functionen. J. Math. 103, 126–138 (1888)Google Scholar
- [LM40]B. Levine, D. Milman, On linear sets in space C consisting of functions of bounded variation (Russian). Comm. Inst. Sci. Math. Mecan. Univ. Kharkoff Soc. Math. Kharkoff IV. Ser. 16, 102–105 (1940)Google Scholar
- [LM14]D. Li, J. Miao, Generalized Kiesswetter’s functions. Preprint (2014)Google Scholar
- [Lut86]W. Luther, The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function. J. Approx. Theory 48, 303–321 (1986)MathSciNetCrossRefGoogle Scholar
- [Lyc40]R.T. Lyche, Une fonction continue sans dérivée. Enseign. Math. 38, 208–211 (1939/1940)Google Scholar
- [Mal84]J. Malý, Where the continuous functions without unilateral derivatives are typical. Trans. Am. Math. Soc. 283, 169–175 (1984)MathSciNetCrossRefGoogle Scholar
- [Mal09]L. Maligranda, Karol Hertz (1843–1904) — absolwent Szkoły Głównej Warszawskiej (Polish). Antiquit. Math. 3, 65–87 (2009)Google Scholar
- [Mar35]J. Marcinkiewicz, Sur les nombres dérivés. Fundam. Math. 24, 305–308 (1935)CrossRefGoogle Scholar
- [Mau79]R.D. Mauldin, The set of continuous nowhere differentiable functions. Pac. J. Math. 83, 199–205 (1979)MathSciNetCrossRefGoogle Scholar
- [Maz31]S. Mazurkiewicz, Sur les fonctions non dérivables. Stud. Math. 3, 92–94 (1931)CrossRefGoogle Scholar
- [McC53]J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)MathSciNetCrossRefGoogle Scholar
- [MG84]D.P. Minassian, J.W. Gaisser, A simple Weierstrass function. Am. Math. Mon. 91, 254–256 (1984)MathSciNetCrossRefGoogle Scholar
- [Mik56]M. Mikolás, Construction des familles de fonctions partout continues non dérivables. Acta Sci. Math. 17, 49–62 (1956)MathSciNetMATHGoogle Scholar
- [Moh80]E. Mohr, Wo ist die Riemannsche Funktion \(\sum \limits _{n=1}^{\infty }\frac{\sin n^{2}x} {n^{2}}\) nichtdifferenzierbar? Ann. Mat. Pura Appl. 123, 93–104 (1980)MathSciNetCrossRefGoogle Scholar
- [Mor38]A.P. Morse, A continuous function with no unilateral derivatives. Trans. Am. Math. Soc. 44, 496–507 (1938)MathSciNetCrossRefGoogle Scholar
- [Mor87]M. Morayne, On differentiability of Peano type functions. Colloq. Math. 53, 129–132 (1987)MathSciNetCrossRefGoogle Scholar
- [Muk34]B.N. Mukhopadhyay, On some generalisations of Weierstraß nondifferentiable functions. Bull. Calcutta M.S. 25, 179–184 (1934)Google Scholar
- [Oka05]H. Okamoto, A remark on continuous, nowhere differentiable functions. Proc. Jpn. Acad. 81, 47–50 (2005)MathSciNetCrossRefGoogle Scholar
- [OMS09]K. Oldham, J. Myland, J. Spanier, An Atlas of Functions (Springer, Berlin, 2009)CrossRefGoogle Scholar
- [OW07]H. Okamoto, M. Wunsch, A geometric construction of continuous, strictly increasing singular functions. Proc. Jpn. Acad. 83, 114–118 (2007)MathSciNetCrossRefGoogle Scholar
- [Pas14]M. Pasch, Veränderliche und Funktion (B.G. Teubner, Leipzig/Berlin, 1914)MATHGoogle Scholar
- [Pep28]E.D. Pepper, On continuous functions without a derivative. Fundam. Math. 12, 244–253 (1928)CrossRefGoogle Scholar
- [Per16]J.B. Perrin, Atoms (D. van Nostrand Company, 1916)Google Scholar
- [Per27]F.W. Perkins, An elementary example of a continuous non-differentiable function. Am. Math. Mon. 34, 476–478 (1927)MathSciNetCrossRefGoogle Scholar
- [Per29]F.W. Perkins, A note on certain continuous non-differentiable functions. Bull. Am. Math. Soc. 35, 239–247 (1929)MathSciNetCrossRefGoogle Scholar
- [Pet20]K. Petr, Example of a continuous function without derivative at any point (Czech). Časopis Pěst. Mat. 49, 25–31 (1920)Google Scholar
- [Pet58]V. Petrův, On the symmetric derivative of continuous functions (Czech). Časopis Pěst. Mat. 83, 336–342 (1958)MathSciNetGoogle Scholar
- [Poi99]H. Poincaré, La logique et l’intuition dans la sciences mathématique et dans l’enseigment. Enseign. Math. 1, 157–162 (1899)MATHGoogle Scholar
- [Pom92]C. Pommerenke, in Boundary Behaviour of Conformal Maps. Grundlehren Der Mathematischen Wissenschaften, vol. 299 (Springer, Berlin, 1992)Google Scholar
- [Por19]M.B. Porter, Derivativeless continuous functions. Bull. Am. Math. Soc. 25, 176–180 (1919)MathSciNetCrossRefGoogle Scholar
- [PT84]P.P. Petrushev, S.L. Troyanski, On the Banach–Mazur theorem on the universality of w[0, 1] (Russian). C. R. Acad. Bulg. Sci. 37, 283–285 (1984)Google Scholar
- [PV13]M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation. Int. J. Math. Anal. 7, 3155–3167 (2013)MathSciNetCrossRefGoogle Scholar
- [Rha57a]G. de Rham, Sur quelques courbes définies par des équations fonctionelles. Rend. Sem Mat. Univ. Torino 16, 101–113 (1957)Google Scholar
- [Rha57b]G. de Rham, Sur un exemple de fonction continue sans dérivée. Enseign. Math. 3, 71–72 (1957)MATHGoogle Scholar
- [RP95]L. Rodriguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 123, 3650–3654 (1995)MathSciNetCrossRefGoogle Scholar
- [RS02]R. Remmert, G. Schumacher, Funktionentheorie 2. Springer-Lehrbuch (Springer, Berlin/Heidelberg, 2002)MATHGoogle Scholar
- [Rud74]W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1974)MATHGoogle Scholar
- [Ryc23]K. Rychlik, Eine stetige nicht differenzierbare Funktion im Gebiete der Henselschen Zahlen. J. Math. 152, 178–179 (1923)MathSciNetMATHGoogle Scholar
- [Sag92]H. Sagan, An elementary proof that Schoenberg’s space-filling curve is nowhere differentiable. Math. Mag. 65, 125–128 (1992)MathSciNetCrossRefGoogle Scholar
- [Sag94]H. Sagan, Space-Filling Curves. Universitext (Springer, New York, 1994)CrossRefGoogle Scholar
- [Sak24]S. Saks, Sur les nombres derivées des fonctions. Fundam. Math. 5, 98–104 (1924)CrossRefGoogle Scholar
- [Sak32]S. Saks, On the functions of Besicovitch in the space of continuous functions. Fundam. Math. 19, 211–219 (1932)CrossRefGoogle Scholar
- [Sch38]I.J. Schoenberg, On the Peano curve of Lebesgue. Bull. Am. Math. Soc. 44, 8 (1938)MathSciNetCrossRefGoogle Scholar
- [Sie14a]W. Sierpiński, An arithmetic example of a continuous non-differentiable function (Polish). Wektor 3, 337–343 (1914)Google Scholar
- [Sie14b]W. Sierpiński, Sur deux problémes de la théorie des fonctions non dérivables. Bull. Int Acad. Sci. Cracovie 162–182 (1914)Google Scholar
- [Sie35]W. Sierpiński, Sur une propriété des fonctions quelconques d’une variable reéle. Fundam. Math. 25, 1–4 (1935)MathSciNetCrossRefGoogle Scholar
- [Sin27]A.N. Singh, On some new types of non-differentiable functions. Ann. Math. 28, 472–476 (1927)MathSciNetCrossRefGoogle Scholar
- [Sin28]A.N. Singh, On Bolzano’s non-differentiable function. Bull. Acad. Pol. A 1928, 191–200 (1928)MATHGoogle Scholar
- [Sin30]A.N. Singh, Arithmetic non-differentiable functions. Ann. Math. 31, 657–659 (1930)MathSciNetCrossRefGoogle Scholar
- [Sin35]A.N. Singh, The theory and construction of non-differentiable functions, in Squaring the Circle and Other Monographs. (Lucknow University Studies, Chelsea Publishing Company) (1935)Google Scholar
- [Sin41]A.N. Singh, On functions without one-sided derivatives. Proc. Benares Math. Soc. 3, 55–69 (1941)MathSciNetGoogle Scholar
- [Sin43]A.N. Singh, On functions without one-sided derivatives ii. Proc. Benares Math. Soc. 4, 95–108 (1943)MathSciNetMATHGoogle Scholar
- [Smi72]A. Smith, The differentiability of Riemann’s functions. Proc. Am. Math. Soc. 34, 463–468 (1972)MathSciNetMATHGoogle Scholar
- [Smi83]A. Smith, Correction to: “The differentiability of Riemann’s function” [Proc. Am. Math. Soc. 34 (1972)]. Proc. Am. Math. Soc. 89, 567–568 (1983)Google Scholar
- [Spu04]K.G. Spurrier, Continuous nowhere differentiable functions. Master’s thesis, South Carolina Honors College (2004)Google Scholar
- [SS86]A. Shidfar, K. Sabetfakhri, On the continuity of van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)MATHGoogle Scholar
- [Ste99]E. Steinitz, Stetigkeit und Differentialquotient. Math. Ann. 52, 58–69 (1899)MathSciNetCrossRefGoogle Scholar
- [Sti14]T.J. Stieltjes, Quelques remarques à propos des dérivées d’une fonction d’une seule variable, in Œuvres Complètes de Thomas Jan Stieltjes, vol. I (Groningen, P. Noordhoff, 1914), pp. 67–72Google Scholar
- [Swi61]W.C. Swift, Simple constructions of nondifferentiable functions and space-filling curves. Am. Math. Mon. 68, 653–655 (1961)MathSciNetCrossRefGoogle Scholar
- [Tak03]T. Takagi, A simple example of the continuous function without derivative. Proc. Phys. Math. Soc. Jpn. 1, 176–177 (1903). See also: The Collected Papers of Teiji Takagi (Springer, New York, 1990), pp. 4–5Google Scholar
- [TH]A.L. Thomson, J.N. Hagler, Between a parabola and a nowhere differentiable place. PreprintGoogle Scholar
- [Thi03]J. Thim, Continuous nowhere differentiable functions. Master’s thesis, Luleå University of Technology (2003)Google Scholar
- [Vas13]N. Vasylenko, Nowhere differentiable Takagi function in problems and applications, in Fifth International Conference on Analytic Number Theory and Spatial Tessellations (2013), pp. 54–55Google Scholar
- [Vol1987]K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)MathSciNetCrossRefGoogle Scholar
- [Vol1989]K. Volkert, Zur Differenzierbarkeit stetiger Funktionen — Ampère’s Beweis und seine Folgen. Arch. Hist. Exact Sci. 40, 37–112 (1989)MathSciNetCrossRefGoogle Scholar
- [Wae30]B.L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Math. Z. 32, 474–475 (1930)MathSciNetCrossRefGoogle Scholar
- [Wei86]K. Weierstrass, Abhandlungen aus der Funktionenlehre (Julius Springer, Berlin, 1886)MATHGoogle Scholar
- [Wei95]K. Weierstrass, Mathematische Werke (Mayer & Müller, Berlin, 1895)MATHGoogle Scholar
- [Wei23]K. Weierstrass, Briefe von K. Weierstrass an Paul du Bois-Reymond. Acta Math. 39, 199–225 (1923)MathSciNetMATHGoogle Scholar
- [Wen00]L. Wen, A nowhere differentiable continuous function. Am. Math. Mon. 107, 450–453 (2000)MathSciNetCrossRefGoogle Scholar
- [Wen01]L. Wen, A nowhere differentiable continuous function constructed using Cantor series. Math. Mag. 74, 400–402 (2001)CrossRefGoogle Scholar
- [Wen02]L. Wen, A nowhere differentiable continuous function constructed by infinite products. Am. Math. Mon. 109, 378–380 (2002)MathSciNetCrossRefGoogle Scholar
- [Wie81]C. Wiener, Geometrische und analytische Untersuchung der Weierstrassschen Function. J. Reine Angew. Math. 90, 221–252 (1881)MathSciNetMATHGoogle Scholar
- [Wun52]W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion. Elem. der Math. 7, 73–79 (1952)MATHGoogle Scholar
- [YG04]T. Yong, Y. Guangjun, Construction of some Kiesswetter-like functions—the continuous but non-differentiable function define by quinary decimal.Anal. Theory Appl. 20, 58–68 (2004)MathSciNetCrossRefGoogle Scholar
- [Yon10]T. Yong, Construction and generalization of a class of Kiesswetter-like functions. J. Kunming Univ. Sci. Technol. 35, 104–110 (2010)Google Scholar
- [You16a]G.C. Young, On infinite derivates. Q. J. Pure Appl. Math. 47, 127–175 (1916)MATHGoogle Scholar
- [You16b]G.C. Young, On the derivates of a function. Lond. M. S. Proc. 15, 360–384 (1916)MathSciNetMATHGoogle Scholar
- [Zaj87]L. Zajiček, Porosity and σ-porosity. Real Anal. Exch. 13, 314–350 (1987)MathSciNetMATHGoogle Scholar
- [Zaj05]L. Zajiček, On σ-porous sets in abstract spaces. Abstr. Appl. Anal. 2005(5), 309–334 (2005)MathSciNetCrossRefGoogle Scholar
- [Zyg02]A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 2002)MATHGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2015