Advances in Molecular Simulation Studies of Clay Minerals

  • Randall T. Cygan
  • Evgeniy M. Myshakin
Part of the Green Energy and Technology book series (GREEN)


The unique structure and behavior of swelling clay minerals, as observed in the laboratory and in the environment, present a challenge in understanding of the molecular details associated with these minerals. The chapter introduces the essence of classical methods involving empirically derived potential energy expressions that allow simulation of periodic cells representing bulk and interfacial clay mineral systems. The classical models provide the simulation and analysis of many thousands to more than a million atoms for evaluating structures, adsorption, diffusion, intercalation, physical, and other properties. Quantum chemical calculations, including molecular orbital methods and density functional theory, optimize the configuration of electrons about atoms from first principles, but require significant computational cost to examine many of the important topics in clay mineralogy. Molecular simulation methods such as energy minimization, molecular dynamics, Monte Carlo techniques, vibrational analysis, thermodynamics calculations, transition state analysis, and a variety of related computational methods are utilized to improve our understanding of clay minerals, and to better interpret traditional characterization and spectroscopic methods. An example showing the use of molecular simulation for clay minerals is presented for the process of montmorillonite’s swelling as a function of interlayer water.


  1. Aimoli, C. G., Maginn, E. J., & Abreu, C. R. A. (2014). Transport properties of carbon dioxide and methane from molecular dynamics simulations. Journal of Chemical Physics, 141(13), 134101.CrossRefGoogle Scholar
  2. Burgess, J. (1999). Ions in solution: Basic principles of chemical interactions (Horwood Series in Chemical Science). Reprint (Revised ed.). Chichester: Elsevier.Google Scholar
  3. Cygan, R. T., Liang, J.-J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108(4), 1255–1266.CrossRefGoogle Scholar
  4. Cygan, R. T., Romanov, V. N., & Myshakin, E. M. (2012). Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. Journal of Physical Chemistry C, 116(24), 13079–13091.CrossRefGoogle Scholar
  5. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15), 154104.CrossRefGoogle Scholar
  6. Grimme, S., Antony, J., Schwabe, T., & Mück-Lichtenfeld, C. (2007). Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Organic & Biomolecular Chemistry, 5, 741–758.Google Scholar
  7. Harris, J. G., & Yung, K. H. (1995). Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. Journal of Physical Chemistry, 99(31), 12021–12024.CrossRefGoogle Scholar
  8. Heinz, H., Lin, T.-J., Mishra, R. K., & Emami, F. S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29(6), 1754–1765.CrossRefGoogle Scholar
  9. Kawamura, K., et al. (1998). New approach for predicting the long-term behavior of bentonite: The unified method of molecular simulation and homogenization analysis. In I. G. McKinley & C. McCombie (Eds.), Scientific basis for nuclear waste management XXI, 506 (pp. 359–366). Warrendale: Materials Research Society.Google Scholar
  10. Lee, K., et al. (2010). Higher-accuracy van der Waals density functional. Physical Review B, 82, 081101(R).CrossRefGoogle Scholar
  11. Myshakin, E. M., et al. (2013). Molecular dynamics simulations of carbon dioxide intercalation in hydrated Na-montmorillonite. Journal of Physical Chemistry C, 117(21), 11028–11039.CrossRefGoogle Scholar
  12. Newton, A. G., & Sposito, G. (2015). Molecular dynamics simulations of pyrophyllite edge surfaces: Structure, surface energies, and solvent accessibility. Clays and Clay Minerals, 63(4), 277–289.CrossRefGoogle Scholar
  13. Sainz-Díaz, C. I., Hernández-Laguna, A., & Dove, M. T. (2001). Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Physics and Chemistry of Minerals, 28(2), 130–141.CrossRefGoogle Scholar
  14. Tavernelli, I., Lin, I. C., & Rothlisberger, U. (2009). Multicenter-type corrections to standard DFT exchange and correlation functionals. Physical Review B, 79, 045106.CrossRefGoogle Scholar
  15. Teich-McGoldrick, S. L., Greathouse, J. A., Jové Colón, C. F., & Cygan, R. T. (2015). Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects. Journal of Physical Chemistry C, 119(36), 20880–20891.CrossRefGoogle Scholar
  16. Teppen, B. J., et al. (1997). Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101(9), 1579–1587.CrossRefGoogle Scholar
  17. Tkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7), 073005.CrossRefGoogle Scholar
  18. van der Spoel, D., van Maaren, P. J., & Berendsen, H. J. C. (1998). A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. Journal of Chemical Physics, 108(24), 10220–10230.CrossRefGoogle Scholar
  19. Voora, V. K., Al-Saidi, W. A., & Jordan, K. D. (2011). Density Functional Theory study of Pyrophyllite and M-Montmorillonites (M = Li, Na, K, Mg, and Ca): Role of dispersion interactions. Journal of Physical Chemistry A, 115(34), 9695–9703.CrossRefGoogle Scholar
  20. Voora, V. K., Al-Saidi, W. A., & Jordan, K. D. (2012). An assessment of the vdW-TS method for extended systems. Journal of Chemical Theory and Computation, 8(4), 1503–1513.CrossRefGoogle Scholar
  21. Zeitler, T. R., Greathouse, J. A., Gale, J. D., & Cygan, R. T. (2014). Vibrational analysis of brucite surfaces and the development of an improved force field for molecular simulation of interfaces. Journal of Physical Chemistry C, 118(15), 7946–7953.CrossRefGoogle Scholar
  22. Zhang, Z., & Duan, Z. (2005). An optimized molecular potential for carbon dioxide. Journal of Chemical Physics, 122(21), 214507.CrossRefGoogle Scholar
  23. Zhu, A. M., Zhang, X. B., Liu, Q. L., & Zhang, Q. G. (2009). A fully flexible potential model for carbon dioxide. Chinese Journal of Chemical Engineering, 17(2), 268–272.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.U.S. Department of EnergySandia National Laboratories (SNL)AlbuquerqueUSA
  2. 2.U.S. Department of EnergyNETL-AECOMPittsburghUSA

Personalised recommendations