Monte Carlo and Molecular Dynamics Simulations of Clay Mineral Systems

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter is focused on reviewing molecular dynamics and Monte Carlo simulations of greenhouse gases’ interactions with swelling clay minerals. This chapter unfolds with the results of simulations on stepwise expansion of interlayer in hydrated montmorillonite. Next, an overview of the simulation data on carbon dioxide intercalation in clays is given with respect to structural changes, transport properties, thermodynamics, spectroscopic characteristics, sorption behavior at the basal clay surfaces, and surface wettability changes in CO2-brine-mineral systems. Effects of the chemical nature of interlayer ions, as well as charge density and its distribution within clay layers on carbon dioxide/water intercalation and interaction with clay surfaces, are discussed. Then, results of methane interaction with hydrated swelling clays are presented. The discussion is centered around the formation of gas hydrate phase in the interlayer under suitable pressure and temperature conditions. Dynamic nature of hydrate cages encapsulating methane molecules is considered together with a mechanism of their formation in interlayer. A shift of the equilibrium pressure and temperature conditions in comparison with bulk phase is attributed to distortion of hydrate lattice in clay and to finite pore space. Finally, intercalation of the carbon dioxide/methane molecules in interlayer is reviewed through competitive adsorption of the binary mixture on clay surfaces.

References

  1. Abascal, J. L. F., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. Journal of Chemical Physics, 123(234505), 1–12.Google Scholar
  2. Aimoli, C. G., Maginn, E. J., & Abreu, C. R. A. (2014). Transport properties of carbon dioxide and methane from molecular dynamics simulations. Journal of Chemical Physics, 141(13), 134101.CrossRefGoogle Scholar
  3. Bagherzadeh, S. A., Moudrakovski, I. L., Ripmeester, J. A., & Englezos, P. (2011). Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles. Energy & Fuels, 25(7), 3083–3092.CrossRefGoogle Scholar
  4. Benson, S. M., & Cole, D. R. (2008). CO2 sequestration in deep sedimentary formations. Elements, 4(5), 325–331.CrossRefGoogle Scholar
  5. Benson, S. M., et al. (2005). Underground geological storage. In B. Metz et al. (Eds.), IPCC special report on carbon dioxide capture and storage (Chap. 5, pp. 195–276). Cambridge and New York: Cambridge University Press.Google Scholar
  6. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces. The Jerusalem symposia on quantum chemistry and biochemistry (B 14, pp. 331–342). Dordrecht: Springer.Google Scholar
  7. Billemont, P., Coasne, B., & De Weireld, G. (2010). An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water. Langmuir, 27(3), 1015–1024.CrossRefGoogle Scholar
  8. Boswell, R., & Collett, T. S. (2011). Current perspectives on gas hydrate resources. Energy and Environmental Science, 4, 1206–1215.Google Scholar
  9. Botan, A., et al. (2010). Carbon dioxide in montmorillonite clay hydrates: Thermodynamics, structure, and transport from molecular simulation. Journal of Physical Chemistry C, 114(35), 14962–14969.CrossRefGoogle Scholar
  10. Burgess, J. (1999). Ions in solution: Basic principles of chemical interactions (1st ed.). Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  11. Chakraborty, S. N., & Gelb, L. D. (2012). A monte carlo simulation study of methane clathrate hydrates confined in slit-shaped pores. Journal of Physical Chemistry B, 116(7), 2183–2197.CrossRefGoogle Scholar
  12. Chamley, H. (1997). Clay mineral sedimentation in the ocean. Soils and sediments (pp. 269–302). Berlin: Springer.Google Scholar
  13. Chen, C., et al. (2016). Pressure and temperature dependence of contact angle for CO2/water/silica systems predicted by molecular dynamics simulations. Energy & Fuels, 30(6), 5027–5034.CrossRefGoogle Scholar
  14. Cipriani, P., Nardone, M., Ricci, F. P., & Ricci, M. A. (2001). Orientational correlations in liquid and supercritical CO2: Neutron diffraction experiments and molecular dynamics simulations. Molecular Physics, 99(4), 301–308.CrossRefGoogle Scholar
  15. Criscenti, L. J., & Cygan, R. T. (2013). Molecular simulations of carbon dioxide and water: Cation solvation. Environmental Science and Technology, 47(1), 87–94.CrossRefGoogle Scholar
  16. Cygan, R. T., Guggenheim, S., & Koster van Groos, F. (2004a). Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay. Journal of Physical Chemistry B, 108(39), 15141–15149.CrossRefGoogle Scholar
  17. Cygan, R. T., Liang, J.-J., & Kalinichev, A. G. (2004b). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108(4), 1255–1266.CrossRefGoogle Scholar
  18. Cygan, R. T., Romanov, V. N., & Myshakin, E. M. (2012). Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. Journal of Physical Chemistry C, 116(24), 13079–13091.CrossRefGoogle Scholar
  19. Davie, M. K., Zatsepina, O. Y., & Buffett, B. A. (2004). Methane solubility in marine hydrate environments. Marine Geology, 203(1–2), 177–184.CrossRefGoogle Scholar
  20. de Pablo, L., Chavez, M. L., & de Pablo, J. J. (2005). Stability of Na-, K-, and Ca-montmorillonite at high temperatures and pressures: A Monte Carlo simulation. Langmuir, 21(23), 10874–10884.CrossRefGoogle Scholar
  21. Ferrage, E., Lanson, B., Sakharov, B. A., & Drits, V. A. (2005). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90(8–9), 1358–1374.Google Scholar
  22. Ferrage, E., et al. (2011). Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. Journal of Physical Chemistry C, 115(5), 1867–1881.CrossRefGoogle Scholar
  23. Fu, M. H., Zhang, Z. Z., & Low, P. F. (1990). Changes in the properties of a montmorillonite-water system during the adsorption and desoprtion of water: Hysteresis. Clays and Clay Minerals, 38(5), 485–492.CrossRefGoogle Scholar
  24. Giesting, P., Guggenheim, S., Koster van Groos, A. F., & Busch, A. (2012a). X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres. Environmental Science and Technology, 46(10), 5623–5630.CrossRefGoogle Scholar
  25. Giesting, P., Guggenheim, S., Koster van Groos, A. F., & Busch, A. (2012b). Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bar: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control, 8, 73–81.CrossRefGoogle Scholar
  26. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A. (2013). Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in Eastern United States. International Journal of Coal Geology, 118, 95–104.CrossRefGoogle Scholar
  27. Guggenheim, S., & Koster van Groos, A. (2003). Experimental investigation of methane gas production from methane hydrate. Geology, 31(7), 653–655.CrossRefGoogle Scholar
  28. Handa, Y. P., & Stupin, D. (1992). Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70 Å radius silica gel pores. Journal of Physical Chemistry, 96(21), 8599.CrossRefGoogle Scholar
  29. Harris, J. G., & Yung, K. H. (1995). Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. Journal of Physical Chemistry, 99(31), 12021–12024.CrossRefGoogle Scholar
  30. Heinz, H., Lin, T.-J., Mishra, R. K., & Emami, F. S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29(6), 1754–1765.CrossRefGoogle Scholar
  31. Hölck, O., et al. (2012). Comparative characterization of chip to epoxy interfaces by molecular modeling and contact angle determination. Microelectronics Reliability, 52(7), 1285–1290.CrossRefGoogle Scholar
  32. Huber, M. L., 2007. NIST Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP). Available online at: https://www.nist.gov/sites/default/files/documents/srd/Supertrapp.pdf. Accessed 8 May 2017.
  33. Hur, T.-B., et al. (2013). Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide. International Journal of Greenhouse Gas Control, 13, 149–155.CrossRefGoogle Scholar
  34. Iglauer, S., Mathew, M. S., & Bresme, F. (2012). Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration. Journal of Colloid and Interface Science, 386(1), 405–414.CrossRefGoogle Scholar
  35. Iglauer, S., Pentland, C. H., & Busch, A. (2015). CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 51(1), 729–774.CrossRefGoogle Scholar
  36. Ilton, E. S., et al. (2012). In Situ X-Ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2. Environmental Science and Technology, 46(7), 4241–4248.CrossRefGoogle Scholar
  37. Ji, L., et al. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appled Geochemistry, 27(12), 2533–2545.CrossRefGoogle Scholar
  38. Jin, Z., & Firoozabadi, A. (2013). Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations. Fluid Phase Equilibria, 360, 456–465.CrossRefGoogle Scholar
  39. Jin, Z., & Firoozabadi, A. (2014). Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilibria, 382, 10–20.CrossRefGoogle Scholar
  40. Jorgensen, W. L., et al. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926.CrossRefGoogle Scholar
  41. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of American Chemical Society, 118(45), 11225–11236.CrossRefGoogle Scholar
  42. Kadoura, A., Nair, A. K. N., & Sun, S. (2016). Molecular dynamics simulations of carbon dioxide, methane, and their mixture in montmorillonite clay hydrates. Journal of Physical Chemistry C, 120(23), 12517–12529.CrossRefGoogle Scholar
  43. Klauda, J. B., & Sandler, S. I. (2002). Ab initio intermolecular potentials for gas hydrates and their predictions. Journal of Physical Chemistry B, 106(22), 5722–5732.CrossRefGoogle Scholar
  44. Koster van Groos, A. F., & Guggenheim, S. (2009). The stability of methane hydrate intercalates of montmorillonite and nontronite: Implications for carbon storage in ocean-floor environments. American Mineralogist, 94(2–3), 372–379.CrossRefGoogle Scholar
  45. Kulga, B., Dilmore, R., Wyatt, C., & Ertekin, T. (2014). Investigation of CO2 storage and enhanced gas recovery in depleted shale gas formations using a dual- porosity/dual-permeability, multiphase reservoir simulator. Morgantown, WV: U.S. Department of Energy.Google Scholar
  46. Kumar, A., Sakpal, T., Roy, S., & Kumar, R. (2015). Methane hydrate formation in a test sediment of sand and clay at various levels of water saturation. Canadian Journal of Chemistry, 93(8), 874–881.CrossRefGoogle Scholar
  47. Kvenvolden, K. A. (1998). A primer on the geological occurrence of gas hydrate. The Geological Society, London, Special Publications, 137, 9–30.Google Scholar
  48. Lee, M. S., McGrail, B. P., & Glezakou, V. A. (2014). Microstructural response of variably hydrated Ca-rich montmorillonite to supercritical CO2. Environmental Science and Technology, 48(15), 8612–8619.CrossRefGoogle Scholar
  49. Linga, P., et al. (2009). Gas hydrate formation in a variable volume bed of silica sand particles. Energy & Fuels, 23(1), 5496–5507.CrossRefGoogle Scholar
  50. Li, X., et al. (2013). Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures. Journal of Physical Chemistry B, 117(18), 5647–5652.CrossRefGoogle Scholar
  51. Loganathan, N., et al. (2016). Cation and water structure, dynamics, and energetics in smectite clays: A molecular dynamics study of Ca-hectorite. Journal of Physical Chemistry C, 120(23), 12429–12439.CrossRefGoogle Scholar
  52. Loring, J. S., et al. (2014). In Situ study of CO2 and H2O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide. Langmuir, 30(21), 6120–6128.CrossRefGoogle Scholar
  53. Lutterotti, L., et al. (2010). Texture analysis of a turbostratically disordered Ca-montmorillonite. American Mineralogist, 95(1), 98–103.CrossRefGoogle Scholar
  54. Makaremi, M., Jordan, K. D., Guthrie, G. D., & Myshakin, E. M. (2015). Multiphase Monte Carlo and molecular dynamics simulations of water and CO2 intercalation in montmorillonite and beidellite. Journal of Physical Chemistry C, 119(27), 15112–15124.CrossRefGoogle Scholar
  55. Martos-Villa, R., et al. (2014). Interaction of methane hydrate complexes with smectites: Experimental results compared to molecular models. American Mineralogist, 99(2–3), 401–414.CrossRefGoogle Scholar
  56. Michalkova, A., & Tunega, D. (2007). Kaolinite: Dimethylsulfoxide intercalate—A theoretical study. Journal of Physical Chemistry C, 111(30), 11259–11266.CrossRefGoogle Scholar
  57. Michels, L., et al. (2014). EXAFS and XRD studies in synthetic Ni-fluorohectorite. Applied Clay Science, 96, 60–66.CrossRefGoogle Scholar
  58. Michels, L., et al. (2015). Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations. Scientific Reports, 5(8775), 1–9.MathSciNetGoogle Scholar
  59. Michot, L. J., et al. (2005). Hydration and swelling of synthetic Na-Saponites: Influence of layer charge. American Mineralogist, 90(1), 166–172.CrossRefGoogle Scholar
  60. Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1–2), 29–42.CrossRefGoogle Scholar
  61. Mohammad, S. A., Arumugam, A., Robinson, R. L. J., & Gasem, K. A. M. (2012). High-pressure adsorption of pure gases on coals and activated carbon: Measurements and modeling. Energy & Fuels, 26(1), 536–548.CrossRefGoogle Scholar
  62. Myshakin, E. M., Jiang, H., Warzinski, R. P., & Jordan, K. D. (2009). Molecular dynamics simulations of methane hydrate decomposition. Journal of Physical Chemistry A, 113(10), 1913–1921.CrossRefGoogle Scholar
  63. Myshakin, E. M., et al. (2013). Molecular dynamics simulations of carbon dioxide intercalation in hydrated Na-montmorillonite. Journal of Physical Chemistry C, 117(21), 11028–11039.CrossRefGoogle Scholar
  64. Myshakin, E. M., et al. (2014). Molecular dynamics simulations of turbostratic dry and hydrated montmorillonite with intercalated carbon dioxide. The Journal of Physical Chemistry A, 118(35), 7454–7468.CrossRefGoogle Scholar
  65. Nielsen, L. C., Bourg, I. C., & Sposito, G. (2012). Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage. Geochimica et Cosmochimica Acta, 81, 28–38.CrossRefGoogle Scholar
  66. Nuttall, B., Ebble, C., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Lexington, KY: University of Kentucky.Google Scholar
  67. Park, S.-H., & Sposito, G. (2003). Do montmorillonite surfaces promote methane hydrate formation? Monte Carlo and molecular dynamics simulations. Journal of Physical Chemistry B, 107(10), 2281–2290.CrossRefGoogle Scholar
  68. Pereira, P. R., Pires, J., & de Carvalho, M. B. (2001). Adsorption of methane and ethane in zirconium oxide pillared clays. Separation and Purification Technology, 21(3), 237–246.CrossRefGoogle Scholar
  69. Rao, Q., & Leng, Y. (2014). Methane aqueous fluids in montmorillonite clay interlayer under near-surface geological conditions: A grand canonical Monte Carlo and molecular dynamics simulation study. Journal of Physical Chemistry B, 118(37), 10956–10965.CrossRefGoogle Scholar
  70. Rao, Q., & Leng, Y. (2016a). Effect of layer charge on CO2 and H2O intercalations in swelling clays. Langmuir, 32(44), 11366–11374.CrossRefGoogle Scholar
  71. Rao, Q., & Leng, Y. (2016b). Molecular understanding of CO2 and H2O in a montmorillonite clay interlayer under CO2 geological sequestration conditions. Journal of Physical Chemistry C, 120(5), 2642–2654.CrossRefGoogle Scholar
  72. Rao, Q., Xiang, Y., & Leng, Y. S. (2013). Molecular simulations on the structure and dynamics of water-methane fluids between Na-Montmorillonite clay surfaces at elevated temperature and pressure. Journal of Physical Chemistry C, 117(27), 14061–14069.CrossRefGoogle Scholar
  73. Romanov, V. N. (2013). Evidence of irreversible CO2 intercalation in montmorillonite. International Journal of Greenhouse Gas Control, 14, 220–226.CrossRefGoogle Scholar
  74. Rother, G., et al. (2013). CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. Environmental Science and Technology, 47(1), 205–211.CrossRefGoogle Scholar
  75. Ryan, T. (2012). Effect of sediment composition on the uniformity of experimentally-formed methane hydrate [MS Thesis]. Morgantown, WV: West Virginia University, Department of Chemical Engineering.Google Scholar
  76. Saharay, M., & Balasubramanian, S. (2004a). Ab Initio molecular-dynamics study of supercritical carbon dioxide. Journal of Chemical Physics, 120(20), 9694–9702.CrossRefGoogle Scholar
  77. Saharay, M., & Balasubramanian, S. (2004b). Enhanced molecular multipole moments and solvent structure in supercritical carbon dioxide. ChemPhysChem, 5(9), 1442–1445.CrossRefGoogle Scholar
  78. Saharay, M., & Dr. Balasubramanian, S. (2006). Errata: Enhanced molecular multipole moments and solvent structure in supercritical carbon dioxide. ChemPhysChem, 7(6), 1167.CrossRefGoogle Scholar
  79. Sato, T., Watanabe, T., & Otsuka, R. (1992). Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40(1), 103–113.CrossRefGoogle Scholar
  80. Schaef, H. T., et al. (2012). In situ XRD study of Ca2+ saturated montmorillonite (STX-1) exposed to anhydrous and wet supercritical carbon dioxide. International Journal of Greenhouse Gas Control, 6, 220–229.Google Scholar
  81. Schaef, H. T., et al. (2015). Competitive sorption of CO2 and H2O in 2:1 layer phyllosilicates. Geochimica et Cosmochimica Acta, 161, 248–257.CrossRefGoogle Scholar
  82. Sena, M. M., Morrow, C. P., Kirkpatrick, R. J., & Krishnan, M. (2015). Supercritical carbon dioxide at smectite mineral–water interfaces: Molecular dynamics and adaptive biasing force investigation of CO2/H2O mixtures nanoconfined in Na-montmorillonite. Chemistry of Materials, 27(20), 6946–6959.CrossRefGoogle Scholar
  83. Seo, Y., Lee, H., & Uchida, T. (2002). Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling. Langmuir, 18(24), 9164–9170.CrossRefGoogle Scholar
  84. Sloan, E. D., & Koh, C. A. (2008). Clathrate hydrates of natural gas (3rd ed.). Boca Raton, FL.: CRC Press.Google Scholar
  85. Smith, D. E., Wang, Y., & Whitley, H. D. (2004). Molecular simulations of hydration and swelling in clay minerals. Fluid Phase Equilibrium, 222, 189–194.CrossRefGoogle Scholar
  86. Šolc, R., Gerzabek, M. H., Lischka, H., & Tunega, D. (2011). Wettability of kaolinite (001) surfaces—Molecular dynamic study. Geoderma, 169, 47–54.CrossRefGoogle Scholar
  87. Sudibandriyo, M., Mohammad, S. A., Robinson, R. L. J., & Gasem, K. A. M. (2011). Ono-Kondo model for high-pressure mixed-gas adsorption on activated carbons and coals. Energy & Fuels, 25(7), 3355–3367.CrossRefGoogle Scholar
  88. Sun, R., & Duan, Z. (2007). An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. Chemical Geology, 244(1–2), 248–262.CrossRefGoogle Scholar
  89. Suter, J. L., Sprik, M., & Boek, E. S. (2012). Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations. Geochimica et Cosmochimica Acta, 91, 109–119.CrossRefGoogle Scholar
  90. Tenney, C. M., & Cygan, R. T. (2014). Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles. Environmental Science and Technology, 48(3), 2035–2042.CrossRefGoogle Scholar
  91. Teppen, B. J., et al. (1997). Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101(9), 1579–1587.CrossRefGoogle Scholar
  92. Thompson, H., et al. (2006). Methane hydrate formation and decomposition: Structural studies via neutron diffraction and empirical potential structure refinement. Journal of Chemical Physics, 124(16), 164508.CrossRefGoogle Scholar
  93. Titiloye, J. O., & Skipper, N. T. (2001). Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures. Molecular Physics, 99(10), 899–906.CrossRefGoogle Scholar
  94. Titiloye, J. O., & Skipper, N. T. (2005). Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures. Journal of Colloid and Interface Science, 282(2), 422–427.CrossRefGoogle Scholar
  95. Uchida, T., Ebinuma, T., & Ishizaki, T. (1999). Dissociation condition measurements of methane hydrate in confined small pores of porous glass. Journal of Physical Chemistry B, 103(18), 3659–3662.CrossRefGoogle Scholar
  96. Vermylen, J. P. (2011). Geomechanical Studies of the Barnett Shale, Texas, USA [Ph.D. dissertation]. Stanford, CA: Stanford University, SRB (Vol. 125).Google Scholar
  97. Viani, A., Gualtieri, A. F., & Artioli, G. (2002). The nature of disorder in montmorillonite by simulation of X-ray power patterns. American Mineralogist, 87(7), 966–975.CrossRefGoogle Scholar
  98. Yang, N., & Yang, X. (2011). Molecular simulation of swelling and structure for Na-Wyoming montmorillonite in supercritical CO2. Molecular Simulations, 37(13), 1063–1070.CrossRefGoogle Scholar
  99. Yang, W., & Zaoui, A. (2016). Capture and sequestration of CO2 in the interlayer space of hydrated calcium montmorillonite clay under various geological burial depth. Physica A: Statistical Mechanics and its Applications, 449, 416–425.CrossRefGoogle Scholar
  100. Yang, N., Liu, S., & Yang, X. (2015). Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material. Applied Surface Science, 356, 1262–1271.CrossRefGoogle Scholar
  101. Yan, K.-F., et al. (2014). Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite. Journal of Molecular Modeling, 20(6), 2311.CrossRefGoogle Scholar
  102. Young, D. A., & Smith, D. E. (2000). Simulations of clay mineral swelling and hydration: Dependence upon interlayer ion size and charge. Journal of Physical Chemistry B, 104(39), 9163–9170.CrossRefGoogle Scholar
  103. Zhang, J. F., & Choi, S. K. (2006). Molecular dynamics simulation of methane in potassium montmorillonite clay hydrates. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(18), 3839–3848.CrossRefGoogle Scholar
  104. Zhang, Z., & Duan, Z. (2005). An optimized molecular potential for carbon dioxide. Journal of Chemical Physics, 122(21), 214507.CrossRefGoogle Scholar
  105. Zhang, T., et al. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.CrossRefGoogle Scholar
  106. Zhou, Y., Castaldi, M. J., & Yegulalp, T. M. (2009). Experimental investigation of methane gas production from methane hydrate. Industrial and Engineering Chemistry Research, 48(6), 3142–3149.CrossRefGoogle Scholar
  107. Zhou, Q., et al. (2011). Hydration of methane intercalated in Na-smectites with distinct layer charge: Insights from molecular simulations. Journal of Colloid and Interface Science, 355(1), 237–242.CrossRefGoogle Scholar
  108. Zhu, A. M., Zhang, X. B., Liu, Q. L., & Zhang, Q. G. (2009). A fully flexible potential model for carbon dioxide. Chinese Journal of Chemical Engineering, 17(2), 268–272.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.U.S. Department of EnergyNETL–AECOMPittsburghUSA
  2. 2.U.S. Department of EnergySandia National Laboratories (SNL)AlbuquerqueUSA

Personalised recommendations