Greenhouse Gases and Their Role in Climate Change

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The chapter begins with a comprehensive review of the representative greenhouse gases and their role in the Earth’s radiative balance. Eight greenhouse gases (CO2, CH4, N2O, HFC-23, HFC-134a, PFC, SF6, and NF3) and their contributions to radiative heating of the atmosphere are analyzed, and the mechanisms associated with global warming potential are discussed. To illustrate the reported evidence of changes in the radiative balance attributed to greenhouse gases, the correlation between the global temperature rise and the increase in atmospheric concentration of CO2, the most important greenhouse gas, is presented. The primary anthropogenic CO2 emission sources and the amount of CO2 emissions by region, and the disturbance of anthropogenic CO2 emission to global carbon cycle are discussed. At the conclusion of this chapter, a brief review of global actions to mitigate anthropogenic CO2 emissions is presented.

References

  1. Archer, D. (2010). The global carbon cycle. Princeton, NJ: Princeton University Press.Google Scholar
  2. Archer, D., Buffett, B., & Brovkin, V. (2009). Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106, 20596–20601.CrossRefGoogle Scholar
  3. Birat, J. P. (2010). Carbon dioxide (CO2) capture and storage technology in the iron and steel industry. Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (pp. 492–521). Amsterdam: Elsevier.CrossRefGoogle Scholar
  4. Broecker, W. S., Peteet, D. M., & Rind, D. (1985). Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315(6014), 21–26.CrossRefGoogle Scholar
  5. Burwicz, E., Rupke, L. H., & Wallmann, K. (2011). Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction transport modeling and a novel parameterization of Holocene sedimentation. Geochimica et Cosmochimica Acta, 75(16), 4562–4576.CrossRefGoogle Scholar
  6. Center for Climate and Energy Solutions. (2015). Climate change 101: International action. Available online at: http://www.c2es.org/publications/climate-change-101/international. Accessed 20 April 2017.
  7. Ciais, P., et al. (1997). A three‐dimensional synthesis study of δ18O in atmospheric CO2: 1. Surface fluxes. Journal of Geophysical Research: Atmospheres, 102(D5), pp. 5857–5872.Google Scholar
  8. European Commission. (2015). Climate action: Working with international partners. Available online at: https://ec.europa.eu/clima/policies/international_en. Accessed 20 April 2017.
  9. Falkowski, P., et al. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290(5490), pp. 291–296.Google Scholar
  10. Field, C. B., & Raupach, M. R. (2004). The global carbon cycle: Integrating humans, climate, and the natural world (Illustrated ed.). Washington, DC: Island Press.Google Scholar
  11. GISTEMP Team. (2016). GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Available online at: http://data.giss.nasa.gov/gistemp/. Accessed 31 January 2016.
  12. Global CCS Institute. (2014). The global status of CCS: 2014. Available online at: http://hub.globalccsinstitute.com/publications/global-status-ccs-2014. Accessed 20 April 2017.
  13. Hall, D. O., & Rao, K. (1999). Photosynthesis. Cambridge: Cambridge University Press.Google Scholar
  14. Halmann, M. M., & Steinberg, M. (1999). Greenhouse gas carbon dioxide mitigation: Science and technology. Boca Raton: Lewis Publishers.Google Scholar
  15. Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4), p. RG4004.Google Scholar
  16. International Energy Agency. (2015). World energy outlook. Available online at: http://www.iea.org/publications/scenariosandprojections/. Accessed 20 April 2017.
  17. IPCC. (2007). Climate change 2007: The physical science basis. Working Group I contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.Google Scholar
  18. IPCC. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.Google Scholar
  19. Joos, F., et al. (1999). Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284(5413), 464–467.Google Scholar
  20. Keeling, R. F., Piper, S. C., Bollenbacher, A. F., & Walker, S. J. (2009). Atmospheric CO2 values (ppmv) derived from in situ air samples collected at Mauna Loa, Hawaii, USA. Available online at: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2. Accessed 20 April 2017.
  21. Kiehl, J. T., & Trenberth, K. E. (1997). Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197–208.CrossRefGoogle Scholar
  22. Kleypas, J. A., et al. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411), 118–120.CrossRefGoogle Scholar
  23. Langdon, C., et al. (2000). Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14(2), 639–654.CrossRefGoogle Scholar
  24. Marini, L. (2007). Geological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling. Amsterdam: Elsevier.Google Scholar
  25. Mohr, H., & Schopfer, P. (1995). Plant Physiology. Berlin: Springer-Verlag Publishing.Google Scholar
  26. NASA. (2014). Wikipedia: Earth’s energy budget. Available online at: https://en.wikipedia.org/wiki/Earth%27s_energy_budget. Accessed 19 April 2017.
  27. NASA. (2016a). Surface energy budget. Available online at: https://www.earthobservatory.nasa.gov/Features/EnergyBalance/page5.php. Accessed 21 April 2017.
  28. NASA. (2016b). The atmosphere’s energy budget. Available online at: https://www.earthobservatory.nasa.gov/Features/EnergyBalance/page6.php. Accessed 21 April 2017.
  29. NASA. (2016c). Climate change: How do we know? Available online at: https://climate.nasa.gov/evidence/. Accessed 21 April 2017.
  30. National Oceanic & Atmospheric Administration. (2015). NOAA—Carbon cycle science. Available online at: https://www.esrl.noaa.gov/research/themes/carbon/. Accessed 21 April 2017.
  31. National Oceanic & Atmospheric Administration. (2016a). NOAA—What is ocean acidification? Available online at: https://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F. Accessed 21 April 2017.
  32. National Oceanic & Atmospheric Administration. (2016b). NOAA—Up-to-date weekly average CO2 at Mauna Loa. Available online at: https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html. Accessed 21 April 2017.
  33. OECD. (2015). Environment at a glance 2015: OECD indicators. Paris: OECD Publishing.Google Scholar
  34. Plucinska, J. (2015, 1 October). India pledges to reduce carbon emissions 33%-35% by 2030. Time.Google Scholar
  35. Post, W. M., et al. (1990). The global carbon cycle. American Scientist, 78(4), 310–326.Google Scholar
  36. Prentice, I. C., et al. (2001). The carbon cycle and atmospheric carbon dioxide. In J. Houghton et al. (Eds.), Climate change 2001: The scientific basis (pp. 183–238). Cambridge and New York: Cambridge University Press.Google Scholar
  37. Raupach, M. R., et al. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10288–10293.Google Scholar
  38. Richardson, K., Steffen, W., & Liverman, D. (2011). Climate change: Global risks, challenges and decisions. New York: Cambridge University Press.Google Scholar
  39. Rosenthal, E. (2007, 20 June). China overtakes U.S. in greenhouse gas emissions. The New York Times.Google Scholar
  40. Sabine, C. L., et al. (2004). Current status and past trends of the global carbon cycle. In C. B. Field & M. R. Raupach (Eds.), The global carbon cycle: Integrating humans, climate, and the natural world (Illustrated ed., pp. 17–44). Washigton, DC: Island Press.Google Scholar
  41. The White House. (2014). Fact sheet: U.S.-China joint announcement on climate change and clean energy cooperation. Available online at: https://obamawhitehouse.archives.gov/the-press-office/2014/11/11/fact-sheet-us-china-joint-announcement-climate-change-and-clean-energy-c. Accessed 21 April 2017.
  42. U.S. Department of Energy. (2015). Carbon storage atlas (5th ed.). Washington, DC: U.S. Department of Energy.Google Scholar
  43. U.S. Energy Information Administration. (2011). EIA—Emissions of greenhouse gases in the U.S.. Available online at: https://www.eia.gov/environment/emissions/ghg_report/ghg_overview.cfm. Accessed 20 April 2017.
  44. U.S. Environmental Protection Agency. (2015). Learn about carbon pollution from power plants. Available online at: https://archive.epa.gov/epa/cleanpowerplan/learn-about-carbon-pollution-power-plants.html. Accessed 21 April 2017.
  45. U.S. Environmental Protection Agency. (2016). Greenhouse gas emissions: overview of greenhouse gases. Available online at: https://www.epa.gov/ghgemissions/overview-greenhouse-gases. Accessed 21 April 2017.
  46. White, C. M., et al. (2003). Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. Journal of the Air and Waste Management Association, 53(6), 645–715.Google Scholar
  47. Wigley, T. M. L., & Schimel, D. S. (Eds.). (2005). The carbon cycle. Cambridge : Cambridge University Press.Google Scholar
  48. Williams, R. G., & Follows, M. J. (2011). Ocean dynamics and the carbon cycle: Principles and mechanisms. New York: Cambridge University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.U.S. Department of EnergyNational Energy Technology Laboratory (NETL)PittsburghUSA
  2. 2.NETL, Oak Ridge Institute for Science and EducationOak RidgeUSA

Personalised recommendations