Skip to main content

Shape Preserving RGB-D Depth Map Restoration

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8836))

Included in the following conference series:

  • 4445 Accesses

Abstract

The RGB-D cameras have enjoined a great popularity these years. However, the quality of the depth maps obtained by such cameras is far from perfect. In this paper, we propose a framework for shape preserving depth map restoration for RGB-D cameras. The quality of the depth map is improved from three aspects: 1) the proposed region adaptive bilateral filter (RA-BF) smooths the depth noise across the depth map adaptively, 2) by associating the color information with the depth information, incorrect depth values are adjusted properly, 3) a selective joint bilateral filter (SJBF) is proposed to successfully fill in the holes caused by low quality depth sensing. Encouraging performance is obtained through our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Microsoft corporation. kinect for xbox 360

    Google Scholar 

  2. Bleiweiss, A., et al.: Enhanced interactive gaming by blending full-body tracking and gesture animation. In: ACM SIGGRAPH ASIA 2010 Sketches, p. 34. ACM (2010)

    Google Scholar 

  3. Chongyu, C., et al.: A color-guided, region-adaptive and depth-selective unified framework for kinect depth recovery. In: 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp. 7–12. IEEE (2013)

    Google Scholar 

  4. Camplani, M., Mantecon, T., Salgado, L.: Accurate depth-color scene modeling for 3d contents generation with low cost depth cameras. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 1741–1744. IEEE (2012)

    Google Scholar 

  5. Camplani, M., Mantecon, T., Salgado, L.: Depth-color fusion strategy for 3-d scene modeling with kinect. IEEE Transactions on Cybernetics 43(6), 1560–1571 (2013)

    Article  Google Scholar 

  6. Camplani, M., Salgado, L.: Efficient spatio-temporal hole filling strategy for kinect depth maps. In: IS&T/SPIE Electronic Imaging, p. 82900E. International Society for Optics and Photonics (2012)

    Google Scholar 

  7. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Advances in Neural Information Processing Systems (NIPS), pp. 291–298 (2005)

    Google Scholar 

  8. Jakob, W., Sebastian, B., Joachim, H.: Real-time preprocessing for dense 3-d range imaging on the gpu: defect interpolation, bilateral temporal averaging and guided filtering. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1221–1227. IEEE (2011)

    Google Scholar 

  9. Kevin, L., et al.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)

    Google Scholar 

  10. Andrew, M., et al.: Enhanced personal autostereoscopic telepresence system using commodity depth cameras. Computers & Graphics 36(7), 791–807 (2012)

    Article  Google Scholar 

  11. Fabio, M., et al.: Geometric investigation of a gaming active device. In: SPIE Optical Metrology, p. 80850G. International Society for Optics and Photonics (2011)

    Google Scholar 

  12. Sergey, M., et al.: Temporal filtering for depth maps generated by kinect depth camera. In: 2011 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2011)

    Google Scholar 

  13. Fei, Q., et al.: Structure guided fusion for depth map inpainting. Pattern Recognition Letters (2012)

    Google Scholar 

  14. Shen, J., Cheung, S.C.S.: Layer depth denoising and completion for structured-light rgb-d cameras. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1187–1194. IEEE (2013)

    Google Scholar 

  15. Yang, J., Ye, X., Li, K., Hou, C.: Depth recovery using an adaptive color-guided auto-regressive model. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 158–171. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, W., Xue, H., Gu, Y., Yang, J., Wu, Q., Jia, Z. (2014). Shape Preserving RGB-D Depth Map Restoration. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8836. Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12643-2_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12642-5

  • Online ISBN: 978-3-319-12643-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics