Skip to main content

Image Denoising with Rectified Linear Units

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8836))

Included in the following conference series:

Abstract

Deep neural networks have shown their power in the image denoising problem by learning similar patterns in natural images. However, the traditional sigmoid function has shown its limitations. In this paper, we adopt the rectified linear (ReL) function instead of the sigmoid function as the activation function of hidden layers to further enhance the ability of neural network on solving image denoising problem. Our experiment shows that by better capturing patterns in natural images, our model can achieve better performance and less time consumption than those using sigmoid units. A large number of experiments show that our approach can achieve the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  3. Aharon, M., Elad, M., Bruckstein, A.: k-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  4. Ma, L., Zhang, L.: Overcomplete topographic independent component analysis. Neurocomputing 71(10), 2217–2223 (2008)

    Article  Google Scholar 

  5. Zhao, H., Luo, J., Huang, Z., Nagumo, T., Murayama, J., Zhang, L.: Image denoising based on overcomplete topographic sparse coding. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part III. LNCS, vol. 8228, pp. 266–273. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Burger, H., Schuler, C., Harmeling, S.: Image denoising: Can plain neural networks compete with bm3d? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399 (June 2012)

    Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: NIPS, pp. 350–358 (2012)

    Google Scholar 

  9. Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: NIPS, vol. 8, pp. 769–776 (2008)

    Google Scholar 

  10. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, JMLR W&CP, vol. 15, pp. 315–323 (2011)

    Google Scholar 

  12. Zeiler, M.D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., et al.: On rectified linear units for speech processing. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3517–3521. IEEE (2013)

    Google Scholar 

  13. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML (2013)

    Google Scholar 

  14. Lecun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, Y., Zhao, H., Zhang, L. (2014). Image Denoising with Rectified Linear Units. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8836. Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12643-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12642-5

  • Online ISBN: 978-3-319-12643-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics