Skip to main content

Energy Model for Grinding Processes

  • Chapter
  • First Online:
Thermo-energetic Design of Machine Tools

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

A major percentage of the mechanical energy introduced during the grinding process is converted into heat. For this reason, the grinding process has a great influence on the thermo-elastic behaviour of the complete machine tool. This paper introduces an approach to model the energy conversion in the grinding process, taking into account grinding wheel topography. An analytical-empirical energy model for grain engagement is abstracted from the phases of chip formation when a single grain is engaged. Chip formation on a single grain was analysed using two newly developed test beds. In this approach, it was possible for the first time to identify the chip formation phases and to demonstrate their significant influence on the energy converted during grain engagement. Moreover, it was possible to derive initial characteristic parameters to model the influence of the grain shape. The Finite-Element simulation of single grain engagement makes it possible to vary the process variables in further experiments, in particular the grain shape properties, independent of one another and in a controlled manner, and to study their influence. It is the goal of ongoing studies to generalise the energy model for single grain engagement as a model for multi-grain engagement and thus the entire grinding process by means of a geometric-kinematic grain engagement model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brinksmeier E (1982) Randzonenanalyse geschliffener Werkstücke. Dissertation, University of Hannover

    Google Scholar 

  • Brinksmeier E, Aurich CJ, Govekar E, Heinzel C, Hoffmeister H-W, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2): 667–696

    Google Scholar 

  • Denkena B, Köhler J, Kästner J (2012) Chip formation in grinding: an experimental study. Prod Eng 6(2):107–115

    Article  Google Scholar 

  • Duscha M, Klocke F, Wegner H, Gröning H (2009) Erfassung und Charakterisierung der Schleifscheibentopographie für die anwendungsgerechte Prozessauslegung. Teil 2. Diam Bus 28(2):28–33

    Google Scholar 

  • Kassen G (1969) Beschreibung der elementaren Kinematik des Schleifvorganges. Dissertation, RWTH Aachen University

    Google Scholar 

  • Klocke F, König W (2005) Fertigungsverfahren Band 2: Schleifen, Honen, Läppen. Springer, Berlin

    Google Scholar 

  • Malkin S, Guo C (2008) Grinding technology. Theory and applications of machining with abrasives, 2nd edn. Industrial Press, New York

    Google Scholar 

  • Marinescu ID (2004) Tribology of abrasive machining processes. Andrew, Norwich

    Google Scholar 

  • Ramesh A, Melkote SN (2008) Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. J Mach Tools Manuf 48:402–414

    Article  Google Scholar 

  • Rasim M, Duscha M, Klocke F (2013) Innovative Versuchsmethodik zur Identifikation der thermischen & mechanischen Werkstoffbeanspruchung während der Spanbildungsphasen beim Schleifen. In: Hoffmeister H-W, Denkena B (eds) Jahrbuch Schleifen, Honen, Läppen und Polieren, vol 66. Vulkan, Essen, pp 2–19

    Google Scholar 

  • Rasim M, Klocke F, Weiß M (2014) Identifikation der Spanbildungsphasen beim Schleifen. In: Neugebauer R, Drossel W-G (ed) Innovations of sustainable production for green mobility energy-efficient technologies in production part 1. 3rd international Chemnitz manufacturing colloquium ICMC 2014 3rd international colloquium of the cluster of excellence eniPROD reports from the IWU, vol 80, pp 813–831

    Google Scholar 

  • Steffens K (1983) Thermomechanik des Schleifens. Dissertation, RWTH Aachen University

    Google Scholar 

  • Tönshoff HK, Inasaki I, Paul T, Peters J (1992) Modelling and simulation of grinding processes. Ann CIRP 41(2):677–688

    Article  Google Scholar 

  • Zäh MF, Föckerer T, Brinksmeier E, Heinzel C, Huntemann J-W (2009) Experimentelle und numerische Bestimmung der Einhärtetiefe beim Schleifhärten. Einflüsse und Absicherung der Wärmequellenmodellierung. wt Werkstattstechnik online 99(1–2):49–55

    Google Scholar 

  • Zeppenfeld C (2005) Schnellhubschleifen von [gamma]-Titanaluminiden. Dissertation, RWTH Aachen University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Rasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rasim, M., Klocke, F., Mattfeld, P. (2015). Energy Model for Grinding Processes. In: Großmann, K. (eds) Thermo-energetic Design of Machine Tools. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12625-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12625-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12624-1

  • Online ISBN: 978-3-319-12625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics